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Mathematical Transgressions 2015 5

During the last decades of the 20th century, we have entered the
Digital Era. The Third Technological Revolution has an enormous socio-
economic impact. It affects modern science, including mathematics. It
also determines the reforms of national education systems. Mathemati-
cians seek to focus on the so-called concrete mathematics. They explore
finite and discrete structures, rather than infinite and continuous ones.
They prefer to develop combinatorics and algorithmic thinking, rather
than contribute to Bourbaki’s edifice. Mathematics itself is expanding its
boundaries by merging with computer science, while symbolic computa-
tions as well as computer-assisted and automated proofs are transforming
it into a quasi-empirical science.

We should agree that mathematics is no longer the Queen of the Sci-
ences; while it is still believed to be the basis of modern education, its
role needs to be re-defined. It is necessary to address this challenge. The
first step in this direction consists of the adoption of a new perspective.
The Latin word transgressio means an act that goes beyond generally
accepted boundaries. This monograph draws together papers written by
mathematicians, educators, pedagogues, psychologists, and philosophers.
Their aim is to identify a new role of mathematics and mathematics ed-
ucation in the modern world.
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Anita Sondore, Elfr̄ıda Krastiņa, Comprehension of elements of
combinatorics in real-life situations among primary school
students . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



Hannes Stoppel, Development of students’ beliefs in mathemat-
ical understanding in relationship to mathematics and its
application . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Career construction in school mathematicsg 233

Edyta Gruszczyk-Kolczyńska, Mathematically gifted children:
research results, analysis, conclusions . . . . . . . . . . . . 235

Ralf Benölken, Research results on mathematical talent, gender
and motivation . . . . . . . . . . . . . . . . . . . . . . . . 267

Eva Nováková, Prediction and self-evaluation as a part of the
process of solving non-standard mathematical task . . . . . 283

Jacobus G. (Kobus) Maree, Career construction in the mathe-
matics classroom: using an integrated, qualitative + quan-
titative approach to enhance learners’ sense of self . . . . 295

András Ambrus, Applying cognitive load theory in mathematics
education . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

Mathematics, Arts and other Sciencesg 323

Jerzy Pogonowski, Paradox resolution as a didactic tool . . . . 325
Urszula Foryś, Interdisciplinary character of mathematics:

biomathematical perspective . . . . . . . . . . . . . . . . . 341
Maria Gokieli, Marcin Szpak, Visualization and Experiment

in (School) Mathematics . . . . . . . . . . . . . . . . . . . 349
Agata Hoffmann, The use of Stanisław Dróżdż‘s works as teach-

ing aids in mathematics . . . . . . . . . . . . . . . . . . . 363
Jakub Jernajczyk, Bartłomiej Skowron, Circle and sphere –

geometrical speculations in philosophy . . . . . . . . . . . 379
Paola Vighi, Abstract paintings, objects, and actions: how pro-

mote geometrical understanding . . . . . . . . . . . . . . . 397



Philosophy

and Psychology of Mathematics





Mathematical Transgressions 2015

Paul Ernest

Challenging three myths about mathematis:

Reognising the soial responsibility of mathematis

Abstrat. In this paper I question and challenge three ideas about
mathematics: that mathematics is (1) a unique and unified subject,
(2) absolute and value- and ethics-free, (3) an unqualified force for
good. Instead I show (1) the motley of meanings pertaining to the
name mathematics, (2) how values may be seen to permeate mathe-
matics, and (3) the harm that mathematics can inadvertently cause
unless it is applied and taught carefully. Alongside this I acknowl-
edge how mathematics is a widespread force for good. The final
recommendation is for the inclusion of the philosophy and ethics
of mathematics alongside its teaching at all stages from school to
university.

Mathematics is a very rich and powerful subject, with broad and
varied footprints across education, science, culture and indeed all of hu-
man history. It has excited philosophers and other thinkers since the
time of Plato and Euclid or earlier, and remains the subject of much
debate. Philosophical discussions and controversies about the nature of
mathematics, including mathematical knowledge, truth and the objects
of mathematics continue to this day (Hersh, 2007; Kitcher and Aspray,
1988; Tymoczko, 1986). Both academia and society in the large accord
mathematics a very high status as an art and as the queen of the sciences
(Bell, 1952). Mathematics has a uniquely privileged status in education
as the only subject that is taught universally and to all ages in schools.
Despite all this exposure and attention it is all too rarely that ideas about
the nature of mathematics, how it impacts on society, and its overall role
and value in education are examined critically. It is therefore not sur-
prising that there are some widespread myths and misunderstandings

Key words and phrases: philosophy of mathematics, ethics, platonism, social con-
structivism, absolutism, mathematical harm.
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about mathematics and these roles. My aim here is to uncover and chal-
lenge some of the widespread assumptions, ideological presuppositions
and myths about mathematics, its role in society, and its impact in the
teaching and learning of mathematics. In this paper I question and chal-
lenge three ideas about mathematics: that mathematics is

1. a unique and unified subject,
2. absolute, universal and value- and ethics-free,
3. an unqualified force for good.

I claim instead that there is no such thing as mathematics, as the term
’mathematics’ does not refer to a single object. Second, I challenge the
view that mathematics is absolute, universal and value-free. I argue in-
stead that there are powerful and legitimate reasons for viewing mathe-
matical knowledge, proofs and the objects of mathematics as human con-
structs. From this perspective, it cannot be claimed that mathematics
is ethics and values free. Mathematics education is of course value-laden
as are all educational and social activities, they are intended to enhance
human life and flourishing. However, my claim is stronger. I will identify
some of the ethical values implicit in mathematics itself.

Third, I argue that mathematics does harm as well as good. My claim
is that mathematics in school has unintended outcomes in leaving some
students feeling inhibited, belittled or rejected by mathematics. In sort-
ing and labelling learners and citizens in modern society, mathematics re-
duces the life chances of those labelled as mathematical failures or rejects.
In addition, even for those successful in mathematics, in shaping thought
in an amoral or ethics-free way, mathematics supports instrumentalism
and ethics-free governance. This is manifested in warfare, psychopathic
corporations, human and environmental exploitation, and in all acts that
treats persons as objects rather than moral beings that deserve respect
and dignity in all interactions. I conclude that to overcome such myths
we need to teach the philosophy and especially the ethics of mathematics
alongside mathematics itself.

There is no such thing as mathematics: The myth of mathemat-
ics as a unique and unified subject

Ever since Plato, or before, humans have been inclined to view nouns
as denoting some real or ideal object. But this is a linguistic and philo-
sophical fallacy. Apart from concrete particulars, far from naming pre-
existent objects, nouns create fictive objects that correspond to their
names, such as Harry Potter, the Equator, or Mathematics. So what can
the term mathematics denote? Epistemologically it denotes a body of
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knowledge. But there is no organised and unified body of mathematical
knowledge. Within academic mathematics just pure mathematics alone
refers to hundreds of subfields and topics (Davis and Hersh, 1980; Ler-
man, 2010) that at best share a family resemblance (Wittgenstein, 1953).
There is no central set of shared symbols, concepts, theories, proof meth-
ods or rhetorical styles (Knuth, 1985). However, even this disparate collec-
tion far from exhausts mathematics. There is pure mathematics, applied
mathematics, statistics, computer mathematics, school mathematics, ac-
countancy mathematics, street mathematics, ethno-mathematics, and so
on. We cannot even say that these all share the same basic number ideas,
for apart from all the different systems and structures we label as number
(itself another fiction of unified referent) there are knowledges that are
constituted by patterning, geometry, argumentation, that can be termed
mathematical but do not involve numbers.

Culturally, in terms of social practices, we cannot claim that mathe-
matics constitutes a unity. In addition to all the above disparate knowl-
edge fields, it cannot be said that mathematics originates in a single or
unified set of mathematical practices. According to Bishop (1988) all of
mathematics evolves from six basic areas of human activity which oc-
cur in all societies. These are counting, locating, measuring, designing,
playing, and explaining. These practices do not even share a family resem-
blance and since what we call mathematics originates in these activities,
and no subsequent total unification takes place, mathematics remains a
multiplicity, a plurality, a motley of disparate knowledge and practices
(Wittgenstein, 1956; Lerman, 2010).

These facts notwithstanding, there is a traditional absolutist perspec-
tive of mathematics as a unity, a single entity, that can be represented
as a skyscraper, with successive storeys of ever more complex theories
based on those beneath built on the unshakeable foundations of axioms
and logic. Epistemologically, this fails to represent mathematics for tech-
nical reasons (Ernest, 1991; 1998). But socially it fails as well, because
mathematics has many locations and contexts.

An alternative and better representation of mathematics is a dynamic,
growing modern city. This has:

1. Multiple skyscrapers, comprising the different formal theories in
mathematics;

2. Universities and academic centers, representing different branches
of research mathematics;

3. A business district, representing various applications of mathemat-
ics and accountancy and business mathematics;
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4. Computers and the city wide internet – computer based mathemat-
ics;

5. Favelas and street markets, representing informal mathematical
practices on the streets, in the shops and ethnomathematics (D’Am-
brosio, 1985);

6. Schools, representing school mathematics and mathematics educa-
tion.

The city model works both epistemologically, representing the differ-
ent type of knowledges and associated practices, and socially, indicating
the varied social locations and practices that make up mathematics.

The city model illustrates the diversity that goes to make up math-
ematics, illustrating the fact that the term ’mathematics’ does not refer
to a single object. This has implications when, for example, we research
teachers’, students’ or the public’s beliefs and ideas about the nature
of mathematics. It is evident from such people’s answers that they do
not have the same ‘mathematics’ in mind. It can be school mathematics,
mathematics as used in everyday life, university mathematics, or even
research mathematics. Some mathematically literate persons claim to see
mathematics in the natural world, the spirals of a sunflower or a nautilus
shell, the arc of a rainbow, the juxtaposition of two imaginary dinosaurs
with two more making four – even prior to the development of humans
able to see it. Before we even consider the disparities between competing
philosophies of mathematics we need to acknowledge that there is no such
thing as mathematics, and like the plurality in the title for ’mathematics’
what we have is a plurality of bodies of knowledge and human practices
which we incorrectly form into a fictitious unity.

One of the outcomes of the perspective of mathematics as a plurality
of bodies of knowledge originating in and embedded in a wide variety of
human practices is that like any other human product mathematics is
value and ethics-laden.

The myth of mathematics as absolute, universal and ethics and
value-free

It is a matter of controversy as to whether mathematical knowledge
is absolutely true, and is made up of truths that are universal and ob-
jective. In contrast a growing number of scholars argue that mathemat-
ics and mathematical knowledge are human creations (Tymoczko, 1987;
Kitcher, 1988; Davis and Hersh, 1980; Ernest, 1998). Tracing the evolu-
tion of mathematical concepts and mathematical truth-methods through
history we can demonstrate that there is no unchanging body of knowl-
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edge and truth (Wilder, 1974). As well as the historical addition of new
concepts, results and proof methods to the sum of mathematical knowl-
edge, which all philosophies of mathematics accept, there are also deep
seated changes to the concepts, meanings, results and proof methods of
mathematics including logic and what counts as acceptable mathematical
proofs (Gillies, 1992; Lakatos, 1976). From this humanistic perspective,
although theorems and warranted mathematical truths are humanly cer-
tain, just as mate in two moves can be from a particular chess position,
mathematical truth cannot claim to be absolute, eternal, objective uni-
versal and superhuman (Ernest, 1998; Hersh, 1997). Such a human-centric
view of mathematics implies, like all other human artefacts constructions
and practices, that mathematics is value-laden and an ethical enterprise.

Elsewhere I have identified a range of different values embedded in
pure mathematical knowledge, including epistemological or epistemic, on-
tological or ontic, aesthetic and ethical values (Ernest, 2015). Here I wish
only to argue the case for ethical values, namely that mathematical knowl-
edge is embedded with implicit ethical values.

There are two sorts of ethical values that I wish to identify within
mathematics. First there are ethical values that are independent of any
particular philosophical orientation that I wish to identify in mathemat-
ics. I term these general mathematical ethics. Second, there are those
values that follow on from a social constructivist philosophy of mathe-
matics, including humanistic, fallibilist or anti-absolutist philosophies of
mathematics. For such philosophies the job is half done, for if mathe-
matical knowledge is humanly constructed, then it is not a far step to
argue, as I do here, that like all other human constructions mathemat-
ics is imbued with human and hence ethical values. I term these social
constructivist ethics.

A. General mathematial ethis

I wish to claim that ethical values imbue both pure and applied math-
ematics. At the heart of mathematics lies mathematical knowledge, that
is, justified mathematical propositions and their proofs. Proof and jus-
tification are arguments and reasoning applied to persuade, indeed to
convince other persons about the truth of mathematical claims, that is,
that mathematical theorems are adequately warranted. However, the very
use of proof and justification can be said to embody the values of open-
ness, fairness and democracy. Proof itself embodies democracy because
it opens up the basis for knowledge to all for scrutiny and verification.
Whether it is the shop keeper presenting a calculated bill for purchases
or a mathematician publishing her latest theorem, the written account
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allows scrutiny of the correctness of the claims and reasoning. Indeed the
terms justification and justice have the same roots in English. From the
14th century on justification has meant the action of justifying and the
administration of justice, and justice is the quality of being fair and just
– the exercise of authority in vindication of what is right (Harper, n.d.).
True justice depends on the open justification of decisions which is the
basis of both mathematics and democracy. Mathematics, like democracy,
is fair because of this openness and potentially equal treatment of all
with respect to knowledge claims, their warranting and decisions as to
their status as knowledge. This is not an incidental outcome of proof,
but implicit in the very nature and purpose of proof, that is to convince
others.

There is an analogy with the physical sciences. For acceptability, scien-
tific claims should be based on observations or experiments that are repli-
cable. That is different scientists should be able to reach the same con-
clusions independently. Likewise, mathematical claims should be based
on proofs which convince different mathematicians of their validity. Thus
at the heart of both mathematics and science lie the values of openness,
fairness and democracy. However, in mathematics, no special apparatus is
needed to validate mathematical knowledge claims, just a well informed
mathematician.

Mathematics has long been associated with ideas of justice and fair-
ness. In ancient societies including those in Mesopotamia the reliability
of calculation, measures and numerical records was understood as part
of the idea of justice (Høyrup, 1994). Later on, in ancient Greece, math-
ematical proof emerged out of a background of philosophical argument
and reason that developed with the first, albeit limited, democracy with
its justification of human claims and rights. It has been argued that some
mathematical concepts and methods embody ideas of fairness. Johnson
(2012) argues that fairness underpins probabilistic concepts and prob-
abilistic methods of reasoning, and that this has implications for the
history and present day practices of market trading.

My claim is that by its very nature, mathematics embodies, displays
and transmits the values of openness, fairness and democracy, admittedly
in a restricted form as I have explained above. But even the identification
of the slenderest strand of ethics and values within the body of mathe-
matical knowledge, and my claim is not so modest, proves my point that
mathematics is not value and ethics-free.

I also wish to argue that even mathematical research conducted purely
for its own sake is ethical. Pure mathematical research is conducted sim-
ply to expand human knowledge and to satisfy the professional drive,
expertise and mastery of the intrinsically motivated mathematician. But
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expanding human knowledge is for the good of humankind, and expand-
ing the skills and mastery of the mathematician is also for the good.
Striving for human flourishing and for the good is the central goal of
ethics. Since the development of pure mathematics entails this goal, it is
a fundamentally ethical enterprise.

B. Soial onstrutivist ethis

Before addressing the issue of ethics, it is important to establish what
the nature of mathematics is claimed to be from a social constructivist
perspective. In brief, the social constructivist philosophy of mathematics
contends that mathematics, including mathematical knowledge, concepts
and rules are humanly constructed and invented tools (Ernest 1998, Hersh
1997). Mathematics is based on human practices, which is why it is so
highly applicable, but developed and presented in a highly objectivised
form. Social constructivism contends that pure mathematics is a distil-
late of the applied mathematical practices that preceded it historically,
although once established pure mathematical practices take on a life of
their own. Mathematicians extend and develop mathematical knowledge
and methods for their own sake, which I have argued, is an ethical un-
dertaking. Through being socially constructed in a variety of practices
mathematics is of necessity linked with other knowledge areas, conse-
quently in addition to any values already present in mathematical knowl-
edge, the values saturating adjacent knowledge areas and practices seep
into mathematics, rendering it richly value-laden. The products of any
ongoing human practices are value-laden and ethical, and mathematics
is not hermetically sealed and no more exempt from this than any other
human products.

Given that mathematics is not purely abstract knowledge existing in
some objective realm of existence, the questions arise. What can it be?
Of what ‘stuff’ is it made? What is the ontology of mathematics if it
does not consist of abstract propositions and concepts in some super-
human Platonic realm? According to social constructivism mathematics
and mathematical knowledge is made up of the coordinated combination
of three material things. These are:

1. Sign systems, existing through their markings (their tokens) but
understood as abstract types through their relationships in/with
the following two components,

2. Individual personal meanings, that is the sense persons have learned
to make of the signs and sign-systems, and their creative usage,
including the understanding which signs (within their contexts) are
to be regarded as equivalent, and
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3. The social institutions comprising the rules and meanings concern-
ing the uses of the sign-systems of mathematics (including which
signs may be conjoined or otherwise lawfully related to other signs
by such relations as name elaboration, simplification with equiva-
lence, calculation, deduction, etc.).

These three coordinated elements set the scene for the underlying unit
for social constructivism, namely conversation, in which texts made up
of signs are exchanged between persons in social contexts.

One of the central types of texts utilised in mathematics is the math-
ematical proof. The role of proof is epistemological in establishing the
truth of a theorem. From the perspective of humanism (Hersh, 1993),
social constructivism (Ernest, 1998), or compatible philosophies of math-
ematics, convincing persons about the correctness of reasoning in a proof
lies at the heart of the epistemological function of proof. A demonstration
of correctness of reasoning is always addressed to another. Consequently
it is not surprising that in the development of a social constructivist phi-
losophy of mathematics elsewhere (Ernest, 1991; 1998). I propose conver-
sation as the underlying epistemological unit. The social constructivist
account of the conversational basis of mathematics draws on the work of
Wittgenstein (1953) and Lakatos’ (1976) Logic of Mathematical Discov-
ery. My claim is that conversation, consisting of symbolically mediated
exchanges between persons, underpins mathematics, and that it does so
in four distinct ways.

1. The ancient origins and various modern systems of proof are con-
versational, through dialectic or dialogical reasoning, involving the
persuasion of others.

2. Mathematics is primarily a symbolic activity, using written inscrip-
tion and language and inevitably addressing a reader, so mathe-
matical knowledge representations are conversational.

3. A substantial class of mathematical concepts have a conversational
structure (e.g., epsilon-delta definitions of limit in analysis, hypoth-
esis testing in statistics, as well as other concepts, Ernest 1994a).

4. The epistemological and methodological foundations and accep-
tance of mathematical knowledge, including the nature and mech-
anisms of mathematical knowledge genesis and warranting are ac-
counted for by social constructivism through the deployment of
conversation in an explicitly and constitutively dialectical way.

My argument is that the very content of mathematical knowledge – its
concepts, methods, proofs – are conversational, so conversation cannot be
dismissed as merely part of the context of discovery (Popper, 1959). These
contents as well as the conversational warranting mechanisms described in
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Lakatos’ (1976) Logic of Mathematical Discovery and in Ernest’s (1998)
Generalised Logic of Mathematical Discovery are also part of the context
of justification (Popper, 1959). So mathematics in all of its manifestations
is riven through and through by conversation, throughout its origins,
practices, and throughout abstracted mathematical knowledge itself.

The published version of a proof appears monological because all of
the anticipated criticisms and responses have been overcome and incorpo-
rated in the final polished result. But as Lakatos (1976) shows the hidden
dialogic of the proof leaves its mark in the refined definitions and lemmas
that make up the final proof. It might be argued that as conversation
is subsumed into mathematics it becomes vestigial and its ethical di-
mensions become attenuated and discountable. My rejoinder is threefold.
First of all, although conversation originates in its observable interper-
sonal form it becomes internalized as the structure of our thinking, so that
all of our thought is shaped conversationally through this continuing pro-
cess, with all of its concomitant assumptions and connotations. Second,
conversation does not become vestigial because of its continuing roles in
the warranting of mathematical knowledge. Furthermore, the warrant-
ing of mathematical knowledge never ceases, as every new formulation or
publication in mathematics requires warranting. Third, as I have argued
above, from humanistic and social constructivist perspectives the distinc-
tion between the contexts of discovery and justification can no longer be
claimed to be watertight or absolute. Some values from the context of
discovery cannot be prevented from imbuing the context of justification.
Thus mathematical knowledge and the processes and products of the con-
text of justification are laden with the values of conversation, and more
generally with human values, as argued above.

As I have argued, in a number of ways, conversation lies at the heart of
mathematics, providing it with a human foundation. It is intrinsic to the
fabric of mathematics, underpinning its concepts and objects, representa-
tions, genesis, proof and warranting. But conversation as an interpersonal
activity is inescapably ethical, it is not just about exchanging information
(Ernest, 1994b; Johannesen, 1996; Gadamer, 1986; Rorty, 1979). For it
entails engaging with a speaker or listener as another human being with
mutual respect and trust, attending to another’s proposals and respond-
ing relevantly, and being aware of reactions to one’s own contributions.
In mathematics, putting one’s proposals in an appropriate and accessible
format following received norms of acceptability is part of one’s ethical
responsibility throughout pure, applied and educational mathematics.

Overall, my claim is that in a number of ways mathematics is imbued
with ethical values. Its basis in verifiable truth claims means that it is
shot through with the values of openness and democracy. This holds no
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matter what philosophy of mathematics is adopted. In addition, from the
social constructivist perspective, the nature of mathematics as a symbolic
activity, a specialized and supplemented form of written language means
that the ethics of human communications are presupposed. If mathe-
matics is conversational then like all forms of inter-human activities and
relationships, it is inescapably ethical.

Is mathematis an untramelled good?

The third myth I wish to challenge is that mathematics is an un-
tramelled good, and that promoting mathematics leads solely to benefi-
cial outcomes. The received wisdom dominating the institutions of math-
ematics, mathematics education and society in general is that mathe-
matics of itself is a wonderful boon for all of humankind, and in areas
where its positive benefits are not remarked it is simply neutral (Gowers,
n. d.). Instead I wish to ask what are or might be the actual outcomes
and potential costs of elevating and privileging mathematics in educa-
tion and society, including any unintended outcomes? Looking at such
outcomes, does mathematics cause any harm or evil? To mathematicians
and many others even asking this question, let alone answering it in the
affirmative, might seem unthinkable, a ridiculous questioning of what has
hitherto been unquestionable. To educationists it is not so difficult ask
this question, or even to answer it in the affirmative, when the impact on
disadvantaged students and society is considered (Stanic, 1989).

Before I address the potential harm that mathematics may do, let me
begin by affirming that mathematics has great value. The overall value
of mathematics comprises the benefits and goods it offers to humanity
as a whole. There are two types of value of mathematics. First, there
is the intrinsic value that mathematics has as a discipline or area of
knowledge, the value of mathematics purely for its own sake. Second,
there is extrinsic value, the general social value of mathematics on the
basis of its applications and uses in society. In addition to the social
benefits of its applications mathematics also has personal value. This is
the value of mathematics for learners and for other persons more widely
as it plays out in terms of individual benefit. Such benefits will vary across
individuals according to personal circumstances, experiences and so on.

The intrinsi value of mathematis

Mathematics has intrinsic value, and as I argued above the further-
ing of mathematics for its own sake is an ethical good for humankind.
Mathematics is a powerful exploration of pure thought, truth and ideas
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for their intrinsic beauty, intellectual power and interest. In its develop-
ment mathematics creates and describes a wondrous world of beautiful
crystalline forms that stretch off to infinity in richly etched exquisiteness.
Part of the intrinsic value of pure mathematics is its widely appreciated
beauty (Ernest, 2015). “Like painting and poetry mathematics has per-
manent aesthetic value” (Hardy, 1941, p. 14). “Mathematics possesses not
only truth, but supreme beauty – a beauty cold and austere, like that of
sculpture” (Russell, 1919, p. 60).

These virtues and values are appreciated not only by those initiated
into the most exclusive inner sanctum of mathematics, the area occupied
by the ground-breaking creative mathematicians. We are often confronted
with complex and fascinating mathematics-based images in the media,
for example multi-coloured pictures of fractals, complex tessellations and
other beautiful representations. These contribute to the public percep-
tion that mathematics can be both beautiful and intriguing, and has an
intrinsic value.

The extrinsi and soial value of mathematis

It is universally acknowledged that mathematics provides the founda-
tion for much of knowledge, especially science, engineering, and informa-
tion and communication technologies. The essential role of mathematics
throughout society is demonstrated by a consideration of three domains
of application: science, computing and finance, although more could be
cited.

First, with regards to science, mathematics is known as both the queen
and servant of science (Bell, 1952). As its servant mathematics provides
the language by means of which modern science is formulated. Mod-
els, laws, theories and predications going as far back as 2000 years ago
to the Ptolemaic model of the universe could not be expressed without
mathematics. Furthermore, scientific applications based in mathematics
underpin engineering, technologyand the whole material basis for modern
life.

Second, enlarging on the theme of technology, computing and the in-
formation and communication technologies that form the language and
basis for all our modern media, knowledge systems and control mecha-
nisms are wholly based on mathematics. Both the knowledge represen-
tations and the programmed instructions upon which information and
communication technology depends can only be expressed by means of
the coding and logic supplied by mathematics.

Third, and far from least, finance, economics, trade, business and
through them, social organisation, rest on a mathematical foundation.
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The tangible embodiment of economics, namely money, is the lifeblood
that circulates throughout these bodies and activities. The commercial
basis of modern society simply would not be possible without money and
hence mathematics.

Each of these three domains of application undoubtedly has many
great benefits in terms of human flourishing, including improvements in
health, nutrition, housing, transport, agriculture, manufacturing, educa-
tion, leisure, communications and wealth. Undoubtedly more human be-
ings than ever live longer, healthier, better educated, more comfortably
and wealthier as a consequence of the mathematics-led developments in
the sciences, technology and engineering in the past two centuries.

In addition to these social benefits shared by so many, mathematics
has great personal value. Learners and more widely, other persons, benefit
from mathematics as: an enlarging element of human culture, a means
of personal development and growth, a valuable tool for use in socially,
both as workers, and general citizens in society, and a means of gaining
certification for entry to employment or further education.

We live in a mathematized social world, and mathematics is the basis
for virtually all of modern life. The immense utility of mathematics must
be acknowledged as a great strength and virtue. For without it not only
would we have to forego many of the tools we as individuals and society
rely on, but many of the necessities and much of our prosperity would
disappear. Mathematics is arguably the most generally applicable of all
human knowledge fields and the good qualities of modern living depend
on it.

Features and harateristis of mathematis

An immediate question is what are the components and dimensions
of mathematics that contribute to its great intrinsic and extrinsic value?
The most obvious is that of number and calculation. Calculation is central
to mathematics, in that it dominates history and schooling. Mathematics
as a scientific discipline is claimed to originate around 3000 years BCE
(Høyrup, 1980). Thus it was already halfway through its history (C. 500
years BCE) before proof entered into mathematics. Prior to that num-
ber recording and calculation, including some geometric measurement
constituted the totality of mathematics. Even since then, numbers and
calculation have dominated both the practical uses of mathematics and
its educational content, with Euclidean geometry overall playing a minor
role, and that just in elite education

At the heart of calculation are rulebased general procedures in which
the meaning of numerals, especially their place-value meaning, by virtue
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of their relative positioning is ignored. Further, largely as a result of Is-
lamic contributions, algebra emerged in the middle ages providing the
abstract language of mathematics upon which all modern developments
depend. Algebra is primarily generalized arithmetic in origin and is sub-
ject to generalized arithmetical procedures and rules, and its strength is
that specific meanings are detached. This was explicitly noted over 300
years ago by Bishop Berkeley.

. . . in Algebra, in which, though a particular quantity be marked
by each letter, yet to proceed right it is not requisite that in every
step each letter suggest to your thoughts that particular quantity
it was appointed to stand for.

(Berkeley, 1710, p. 59)

At its heart, algebra is variable based, thus forcing a unique linguistic
move in the language away from specific values and meanings to general
rules and procedures. This move has some great benefits. It enables the
miracle of electronic computing in which mathematical rules and proce-
dures are wholly automated and no reference to or comprehension of the
meaning of mathematical expressions is required.

A further characteristic of school, university and research mathemat-
ics is that they are represented in the symbolism and language of math-
ematics, fundamentally in sentences. Mathematical sentences, although
often containing symbols, conform to the usual subject-verb form, or more
generally, in terms-relation form, where a relation is a generalised verb. In
a detailed analysis Rotman (1993) has found that usually, although there
is some limited use of the indicative mood, the predominant verb form in
mathematical language is the imperative mood. Imperatives instruct or
direct actions – either inclusively, such as: let us . . . , consider . . . or exclu-
sively, such as: add, count, solve, prove, etc. Mathematics is more richly
studded with imperatives than any other school subject (Rotman, 1993;
Ernest, 1998). Mathematical operations require rigid rule following. At
its most creative mathematics allows choices among multiple strategies,
but each of the lines pursued involves strict rule following. Mathematics is
very unforgiving too. There is no redundancy in its language and any er-
rors in rule following derails the procedures and processes. The net result
is a social training in obedience, an apprenticeship in strict subservience
to the printed page. Mathematics is not the only subject that plays this
role but it is by far the most important in view of its imperative rich and
rule-governed character.

One of the most important ways that a social training in obedience is
achieved is through the universal teaching and learning of mathematics
from a very early age and throughout the school years. The central and
universal role of arithmetic in schooling provides the symbolic tools for
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quantified thought, including not only the ability to conceptualize situ-
ations quantitatively, but a compulsion to do so. This compulsion first
comes from without, but is appropriated, internalized and elaborated as
part of the postmodern citizen’s identity. We cannot stop calculating and
assigning quantified values to everything, in a society in which what mat-
ters is what counts or is counted.

The teaching and learning of mathematics in schools, and thus the
development of mathematical identity requires that, from the age of five
or soon after, depending on the country, children will (Ernest, 2007):

1. acquire an object-oriented language of objects and processes,
2. learn to conduct operations on and with them without any intrinsic

reasons or sense of value (deferred meaning),
3. decontextualise their world of experience and replace it by a delib-

erately unrealistic and very stylized model composed of simplified
static objects and reversible processes,

4. suppress subjectivity, experiential being and feelings in their math-
ematical operations on objects, processes and models,

5. learn to prioritize and value the outcomes of such modelling above
any personal or connected values and feelings, and apply these out-
comes irrespective of such subjective dimensions to domains includ-
ing the human ‘for your [their] own good’ (Miller, 1983).

King (1982) researched the mathematics in 5-6 year old infant class-
rooms. He found that mathematics involves and legitimates the suspen-
sion of conventional reality more than any other school subject. People are
coloured in with red and blue faces. “A class exercise on measuring height
became a histogram. Marbles, acorns, shells, fingers and other counters
become figures on a page, objects become numbers” (King, 1982, p. 244).
In the world of school mathematics even the meanings of the simplified
representations of reality that emerge are dispensable.

Most teachers were aware that some children could not read the
instructions properly, but suggested they ‘know how to do it (the
mathematics) without it.’ . . . Only in mathematics could words be
left meaningless.

(King, 1982, p. 244)

In the psychology of mathematics education instrumental understand-
ing, consisting of knowing how to carry out procedures without under-
standing, versus relational understanding that also comprises knowing
how and why such procedures work, is much discussed as a problem is-
sue (Skemp, 1976; Mellin-Olsen, 1987). It is no coincidence that what
is termed instrumental understanding is also a form of the instrumental
reasoning critiqued by the Frankfurt School, as reported below.
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In summary, many procedures on signs are carried out with abstracted
or deferred meanings, and many mathematical texts, be they calculations,
derivations or proofs, involve the reader following rule-governed sequences
or orders. In education mathematics is the subject most divorced from
everyday or experienced meaning, and the objectification and dehuman-
isation of the subject are a necessary part of its acquisition.

However, I need to qualify these claims. Although mathematical signs
and procedures are detached from meaningful referents in the world,
mathematics creates its own inner world of meanings. Mathematicians
work within a richly populated conceptual universe which is very mean-
ingful for them. Success at mathematics at most levels is associated with
persons involved having a meaningful domain for the interpretation of
mathematical signs and symbols, even if it is within the closed world
of mathematics. Furthermore, applied mathematicians interpret mathe-
matical models in the world around us so in applications meanings are
reattached. Likewise, although mathematical language is very rich in im-
peratives, successful users of mathematics at all levels have certain de-
grees of freedom available to them, such as which methods and procedures
to apply in solving problems. These qualifications notwithstanding, the
study of mathematics does instil both the capacity to, and the expecta-
tion of, meaning detachment during reasoning and calculative procedures.
Likewise, it does prepare its readers to follow the imperatives in the text
during the technical and instrumental reasoning involved in mathematics.

Mathematial thinking as detahed instrumental and alulative rea-

soning

My claim is that the linguistic characteristics and moves indicated
above have costs, including unanticipated negative outcomes when ex-
tended and applied beyond mathematics. For as I have argued, the math-
ematical way of thinking promotes a mode of reasoning in which there is
a detachment of meaning. Reasoning without meanings provides a train-
ing in ethics-free thought. Ethical neutrality or irrelevance is presupposed
because meanings, contexts and their associated purposes and values are
stripped away and discounted as irrelevant to the task or thought in
hand. Furthermore, as I argued above, there is a widespread perception
of mathematics as absolute, universal and imbued with certainty, and
hence an ethics and value-free domain of thought. This is the second
of two myths that I critiqued above. Such perspectives and reasoning
contribute to a dehumanized outlook, for without meanings, values or
ethical considerations reasoning can become mechanical and technical or
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thing- or object-orientated. These modes of thinking foster what have
been termed separated values.

Gilligan (1982) proposes a theory of values which can usefully be
applied to mathematical and other types of reasoning. This theory dis-
tinguishes separated from connected values positions and places them in
opposition. The separated position valorises rules, abstraction, objecti-
fication, impersonality, unfeelingness, dispassionate reason and analysis,
and tends to be atomistic and thing-centred in focus. The connected po-
sition is based on and valorises relationships, connections, empathy, car-
ing, feelings and intuition, and tends to holistic and human-centred in its
concerns. These two values positions can be seen as pairs of oppositions,
with separated values (first) contrasted with connected values (second,
respectively): rules vs. relationships, abstraction vs. personal connections,
objectification vs. empathy, impersonal vs. human, unfeeling vs. caring,
atomistic vs. holistic, dispassionate reason vs. feelings, analysis vs. intu-
ition.

The separated values position applies well to mathematics. Mathe-
matical objects are entities resulting from objectification and abstraction
and are naturally impersonal and unfeeling. Mathematical structures are
constituted by abstract and rule-based sets of objects and their structural
relationships. The processes of mathematics are atomistic and object-
centred, based on dispassionate analysis and reason in which personal
feelings play no direct part. Thus separated values fit mathematics very
well and indeed can be said to be an essential part of mathematics. Math-
ematics both embodies and transmits these values.

Separated values and the associated outlooks are necessary, indeed
essential by the very nature of mathematics, and their acquisition consti-
tute assets and are undoubtedly beneficial for thinking in mathematics.
A separated scientific outlook is also useful in reasoning in other inani-
mate domains, such as in physics and chemistry, where atomistic analysis,
strictly causal relationships and structural regularities yield high levels of
knowledge. However, thinking exclusively in the separated mode can lead
to problems and abuses when applied outside mathematics and the phys-
ical sciences to society. In the human sphere exclusively separated values
are unnecessary and potentially harmful, since they factor out the human
and ethical dimensions. In seeing the world mathematically the beautiful
richness of nature and human worlds with all their contextual complex-
ity and ethical responsibilities, are replaced by simplified abstracted and
objectified structural models. Although mathematical perspectives and
models are powerful and useful tools for actions in the world, including
the improvement of human life conditions, when overextended they can
become a threat to our humanity. Inculcating these values can lead to a
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dehumanized outlook when applied to social and human worlds. Further-
more, separated values extended too far beyond mathematics imply that
mathematics and its applications have no ethical or social responsibility.

The vision I want to develop is that subjection to mathematics in
schooling from halfway through one’s first decade, to near the end of
one’s second decade, and beyond if one so chooses, structures and trans-
forms our modes of thought in ways that may not be wholly beneficial.
I do not claim that mathematics itself is harmful. But the manner in
which the mathematical way of seeing things and relating to the world
of our experience is integrated into schooling, society and above all the
interpersonal and power relations in society results in the transformation
of the human outlook. This is a contingency, an historical construction,
that results from the way that mathematics has been recruited into sys-
tems thinking instead of empathising (Baron-Cohen, 2003) and separated
values instead of connected values (Gilligan, 1982) that dominate western
bureaucratic thinking. It also results from the way mathematics serves a
culture of objectification, termed a culture of having rather than being
by the critical theorist Fromm (1978).

One framework that subsumes these aspects of the application of
mathematics is that of instrumental reason or rationality. Instrumental
reason is the objective form of action or thought which treats its objects
simply as a means and not as an end in itself. It focuses on the most
efficient or most cost-effective means to achieve a specific end, without
reflecting on the value of that end (Blunden, n. d.). Instrumental reason
has been subjected to critique by a range of philosophers from Weber
to Habermas (Schecter, 2010). This includes Heidegger, who argues that
instrumental reason and what he terms calculative thinking lead us into
enclosed systems of thought with no room for considering the ends, values
and indeed ethical dimensions of our actions (Haynes, 2008). As Heideg-
ger puts it, even ‘the world now appears as an object open to the attacks
of calculative thought’ (Dreyfus, 2004, p. 54).

A broader critique comes from the Critical Theorists of the Frankfurt
School (including Adorno, Fromm, Habermas, Horkheimer and Marcuse)
who see instrumental reason as the dominant form of thought within
modern society (Bohman, 2005; Corradetti, n. d.). By focussing on tech-
nical means and not on the ends of their actions, persons, governments
and corporations risk complicity in the treatment of human beings as
objects to be manipulated, in actions that threaten social well-being, the
environment and nature. It underpins behaviours of some governments
and multinational corporations in reducing costs and chasing profits with-
out regards for the human costs. Such actions by corporations have been
termed psychopathic (Bakan, 2004). We are now so used to the economic,
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instrumental model of life and human governance that most persons see
it as an unquestionable practical reality, a necessary evil and are not
shocked or outraged.

Much of the Frankfurt School critique was prompted by the rise of
Nazism in Germany, with its authoritarian leaders (Adorno et al, 1950)
and the heartless complicity of ordinary citizens in Germany and occupied
territories before and during World War 2. The capture, transportation,
enslavement and murder of millions of fellow citizens was not simply un-
dertaken by monsters. These wholesale activities would not have been
possible without many ordinary citizens unquestioningly doing their ev-
eryday jobs as part of this monstrous programme. Arendt (1963) terms
this ordinariness, from the actions of Eichmann downward, the ‘banality
of evil’. The fact that many ordinary citizens were highly educated did
not prevent them from complicity in mass murder. As Dr. Haim Ginott,
a school principal who survived a Nazi concentration camp, wrote in his
advice to his teachers:

I am a survivor of a concentration camp. My eyes saw what
no man should witness: gas chambers built by learned, children
poisoned by educated physicians, infants killed by trained nurses
engineers, women and babies shot and burned by high school and
college graduates. So I am suspicious of education. My request is:
help your students to become human. Your efforts must never pro-
duce learned monsters, skilled psychopaths, educated Eichmanns.
Reading, writing and arithmetic are important only if they serve
to make our children more humane.

(Ginott, 1972, page unknown)

My argument is that mathematics plays a central role in normalizing
instrumental and calculative ways of seeing and thinking. From the very
start of their education children are schooled in these ways of seeing and
being. As I have argued, the detachment of meaning and the following
of imperatives in mathematical texts provides the central platform for
instrumental thought. 1

There is a further factor too. Among philosophers, mathematicians, as
well as in school and society more generally, mathematics has the image of
objectivity, unquestionable certainty, with claims being settled decisively
as either true or false as well as being ethically neutral (Ernest, 1998;
Hersh, 1997). This is what I identified and critiqued above as the sec-

1. Of course the right social circumstances are needed too. A society with values of
strong social-conformity and a culture of obedience to authority is needed, as Milgram
(1974) showed in his experiments. However, as I have argued, subjection to thousands
of hours of school mathematics and schooling in general will contribute to this.
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ond mathematical myth. Thus a training in mathematics is also a train-
ing in accepting that complex problems can be solved unambiguously
with clear-cut right or wrong answers, with solution methods that lead
to unique correct solutions. Within the domain of mathematical reason-
ing, problems, methods and solutions are value-free and ethically neutral.
But carrying these beliefs beyond mathematics to the more complex and
ambiguous problems of the human world leads to a false sense of cer-
tainty, and encourages an instrumental and technical approach to daily
problems. This is damaging, for when decision making is driven purely
by a separated, instrumental rationality, then ethics, caring and human
values are neglected, if not left out of the picture altogether. Kelman
(1973) argues that ethical considerations are eroded when three condi-
tions are present: namely, standardization, routinization, and dehuman-
ization. Since mathematics is the essence of instrumental reason, with
its focus on means to ends and not on underlying values, and its pro-
cedures require standardization, routinization, and dehumanization, the
concomitant erasure of ethics is no surprise. Thus a training in mathe-
matical thinking, when mis-applied beyond its domain of validity to the
social domain, is potentially damaging and harmful.

The soial impats of mathematis and its appliation

One of the key areas in which instrumental modes of thinking is
widespread is within the applications of mathematics. I have described
some of the broad range of applications of mathematics in society and
their widespread benefits. Alongside these beneficial outcomes the qual-
ifications and caveats I offer here are relatively small, but nevertheless
significant negative outcomes. The direct applications of mathematics
underpin science, technology including information and communication
technologies, and finance and business. Thus, for example, mathematics
underpins military applications such as nuclear weapons, missile guid-
ance systems, battlefield computer systems, drone technologies, and so
on. I am not claiming bad uses of such weapons makes mathematics and
science evil. This would be fallacious. But I am claiming that applied
mathematicians should try to be aware of the uses to which their appli-
cations are made, and if they are potentially hurtful or harmful should at
least consider the consequences and their own involvement as facilitators.
It has been suggested that there should be a Hippocratic oath for math-
ematicians (Davis, 1988). Given the widespread views of the neutrality
of mathematics, even of applied mathematics, this would seem to be an
unlikely development.
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There is an outstanding use of mathematics that is not usually coun-
ted among the applications of mathematics. This is the role of mathe-
matics as basis of money and finance. Money and thus mathematics is
the tool for the distribution of wealth. It can therefore be argued that as
the key underpinning tool mathematics is implicated in the global dispar-
ities in wealth and life chances manifested in the human world. It is not
an exaggeration to claim that many current forms of capitalism distort
equality in and across global societies to the detriment of social justice,
as well as promoting consumerism. Of course this is a hot political issue.
My argument is not that we should oppose the western capitalist sys-
tem like the Anti-Globalization and Occupy movements (Wikipedia, n.
d. a, b). Instead my proposal is that we should foster an ethical and in
particular a critical, social justice oriented attitude towards applications
alongside mathematical skills so that students and citizens in our democ-
racies can make up their own minds. There is a substantial literature
on critical mathematics education that promotes this goal (Ernest, 1991;
Skovsmose, 1994; Powell and Frankenstein, 1997; Ernest et al., 2016).
Furthermore, the idea that our actions should be ethical and in particu-
lar promote social justice is now mainstream thinking, at least in Europe,
for example the European Union Treaty stipulates that it shall promote
social justice (European Union, n. d.).

The soial impat of the image of mathematis

An indirect way through which mathematics impacts on society and
individuals is through its images, which can be divided into social and per-
sonal images. Social images of mathematics include public images, which
are representations in the mass media, such as film, cartoon, pictorial,
and computer representations of mathematics. They also include school
images which incorporate classroom posters, equipment, textbook teacher
presentations, and school mathematical activities as experienced by the
learners. Parent, peer or others’ narratives about mathematics also con-
tribute to its social image. Personal images of mathematics include mental
pictures, visual, verbal or other mental representations, and are assumed
to originate from past experiences and encounters with mathematics, as
well as from social talk and other public representations. Personal im-
ages of mathematics comprise both cognitive and affective dimensions
and effects. The types of mathematics as portrayed in its images can
include research mathematics and mathematicians, school mathematics,
and mathematical applications, both everyday or more complex. Social
and personal images of mathematics are intimately related, as personal
images must be assumed to result from the lived experiences of learning
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and using mathematics and from exposure to social images of mathemat-
ics. Likewise, social images of mathematics are constructed by individuals
or groups drawing on their own personal images, which are then repre-
sented and made public. Both kinds of image can have implicit elements
of which individuals are not explicitly aware. Thus, what is termed the
hidden curriculum comprises those accidental or unplanned elements of
knowledge representations and learning experiences within the school cur-
riculum, which can include images of mathematics (Ernest, 2012).

A widespread public image of mathematics in the West is that it is dif-
ficult, cold, abstract, theoretical, ultra-rational, but important and largely
masculine (Buerk, 1982; Buxton, 1981; Ernest, 1996; Picker and Berry,
2000)). It also has the image of being remote and inaccessible to all but
a few super-intelligent beings with ‘mathematical minds’. For many peo-
ple the image of mathematics is also associated with anxiety and failure.
When Brigid Sewell was gathering data on adult numeracy for the Cock-
croft Inquiry (1982) she asked a sample of adults on the street if they
would answer some questions. Half of them refused to answer further
questions when they understood it was about mathematics, suggesting
negative attitudes. Extremely negative attitudes such as ‘mathephobia’
(Maxwell, 1989) probably only occur in a small minority in western so-
cieties, but are nevertheless a significant extreme within the distribution
of attitudes. Thus some of the problems associated with widespread so-
cial (and personal) images of mathematics are the perceptions that it
is a masculine subject, much more accessible to males; and that it is a
difficult subject only accessible to a gifted minority. The effect of these
images, coupled with the negative learning experiences reported by some
students, is to foster negative personal images of mathematics incorporat-
ing negative attitudes such as poor confidence, lack of self-efficacy beliefs,
and dislike and even anxiety with respect to mathematics. One of the con-
tributors to the negative images of mathematics is the absolutist image
of mathematics as objective, superhuman and value-free, critiqued as the
second myth above. For many this contributes to a sense of alienation and
exclusion from mathematics (Buerk, 1982; Buxton, 1981). Of course, for
a successful minority this image is part of the attraction of mathematics,
namely that it is unchanging, perfect, and a safe haven from the chaos
and uncertainties of everyday life.

Two of the detrimental effects of images of mathematics are thus
the masculine image of mathematics with its negative impact on female
students, and the negative impact of mathematics on the attitudes and
self-esteem of a minority. The problem with these negative impacts is
that mathematics is a highly esteemed and valued subject in schools and
universities. Because of this, mathematics examinations are used as a sift-
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ing or filtration device in society, and life chances and social rewards are
disproportionately correlated with success at mathematics. Sells (1973,
1978) has termed mathematics the ‘critical filter’ in determining life-
chances. While mathematical knowledge has important uses and applica-
tions in modern societies, the status of mathematical achievement is ele-
vated beyond its actual utility. Mathematics is increasingly hidden from
citizens in modern society behind complex systems including information
and communication technology applications, and the immense comput-
erised control and surveillance systems that regulate and monitor modern
societies. Advanced mathematical skills are not needed by the many that
operate these systems, and can do so successfully without awareness of
their mathematical foundations (Niss, 1994; Skovsmose, 1988).

In addition, success in school mathematics is strongly correlated with
the socio-economic status or social class background of students. Al-
though this is true with virtually all academic school subjects, mathemat-
ics has a privileged status. It is the examinations in mathematics in partic-
ular that serve as a fractional distillation device that is class reproductive,
at least to some extent. Talented mathematicians from any background
may be successful in life, nevertheless the net effect of mathematical ex-
aminations is the grading of students into a hierarchy with respect to life
chances. This hierarchy doubly correlates with social class socio-economic
status and social class in terms of both the social origins and the social
destinations of students So it is not merely raw mathematical talent that
is reflected in mathematical achievement. It is also partially mediated by
cultural capital (Bourdieu, 1986; Zevenbergen, 1998). My claim is that
the social image of mathematics as experienced by learners contributes to
their personal image of mathematics and that this is an important factor
in their success in mathematics. Personal images of mathematics include
attitudes to mathematics and attitudes to mathematics play a key role
in success at mathematics via multiplying mechanisms which I call the
success and failure cycles (Ernest, 2013).

The mechanisms are as follows. Some students suffer from negative
attitudes to mathematics, including poor confidence and poor mathemati-
cal self-concept, and in a minority possible mathematics anxiety (Buxton,
1981). Following Maslow’s (1954) hierarchy of needs theory, persons will
do a great deal to avoid risks including threats to personal self-esteem. So
negative attitudes lead to reduced persistence and some degree of math-
ematics avoidance resulting in reduced learning opportunities. A conse-
quence of this is lack of success in mathematics including failure. Students
who experience an overall lack of success and repeated failure at math-
ematical tasks and tests develop or strengthen their negative attitudes to
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mathematics, completing a self-reinforcing cycle, leading to a down-
ward spiral in all three of its components, illustrated in Fig. 1.

Negative attitudes to mathematics
Poor confidence and mathematics self-
-concept. Possible mathematics anxiety

ր ց

Failure at mathematical tasks
and tests. Repeated lack of

success in mathematics
←−

Reduced persistence and
learning opportunities,
mathematics avoidance

Figure 1. The Failure Cycle (adapted from Ernest 2013).

In this, as in any proper cycle, there is no beginning point. All three
elements develop together, and any one of them could be nominated as a
starting point. Failure leads to poor attitudes, negative attitudes lead to
disengagement, and disengagement reduces success. But once the cycle is
started it becomes self-reinforcing and self-perpetuating.

In contrast, positive student attitudes to mathematics, including con-
fidence, a sense of self-efficacy, pleasure in and motivation towards math-
ematics lead to increased effort, persistence, and the choice of more de-
manding tasks. This is because of the intrinsic rewards such as intel-
lectual satisfaction and the desire for success. The increased efforts and
engagement in turn lead to students experiencing further success at math-
ematical tasks and mathematics overall. Consequently, positive student
attitudes to mathematics are reinforced, completing a success cycle, in
an enhancing upward spiral.

Psychologists, including Howe, (1990) have shown that a mechanism
like that shown in Fig. 2 is an important factor in the development of
exceptional abilities among gifted and talented students. Students who
demonstrate some giftedness and talent at around the age of 10 are very
significantly further ahead of their peers at the age of 20 precisely because
of the factors shown in the figure. Early success and the attitudes it breeds
lead to much greater effort, persistence, and choice of more demanding
tasks which lead to the flowering of the later manifested exceptional abil-
ities. Howe found that the exceptionally talented invested an extra 5,000
hours in practice of their skills and abilities. This was double the time
spent by their capable but less outstanding peers. This finding has been
popularized as the ‘10,000 hour rule’ by Gladwell (2008).
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Positive attitudes to mathematics.
Confidence, Sense of Self-Efficacy,

Pleasure, Motivation in mathematics

ր ց

Success at Mathematical
Tasks and mathematics

overall
←−

Effort, Persistence, Choice
of more demanding tasks in

mathematics

Figure 2. The Success Cycle (adapted from Ernest 2013).

Another impact of the social image of mathematics is in sex-differen-
ces. Traditionally females have had lower levels of achievement in school
mathematics and lower levels of participation in advanced mathemati-
cal study and careers than males. Although school level achievements in
mathematics have now balanced out, research shows that females con-
tinue to have, on average, more negative attitudes to mathematics than
males, and this continues to be reflected in continuing lower levels of par-
ticipation after the age of 16 years (Forgasz et al., 2010). It is claimed
that the social image of mathematics is a significant causal factor in these
sex-differences (Mendick, 2006). Thus widespread gender stereotyped so-
cial images of mathematics include the view that mathematics is a male
domain and is incompatible with femininity (Ernest, 1996). This con-
tributes to gender stereotyped school images of mathematics which are
manifested in a lack of equal opportunities, such as in classroom interac-
tions in learning mathematics (Walkerdine, 1988; 1998). Social images as
well as these school factors lead to gender-stereotyping in females’ individ-
ual images of mathematics and impact negatively on their confidence and
perceptions of their own mathematical abilities (Isaacson, 1989). The dis-
advantaging effects of these factors result in underachievement and lower
participation rate in mathematics post-school. However, in the past two
decades, female underachievement has been balanced out by male under-
achievement due to a separate set of factors, such as many young men’s
disengagement from school, especially in Anglophone countries such as
United Kingdom (Forgasz et al., 2010). However, rather than meaning
that equality between the sexes has been achieved, it means that there
are now two gender-rated problems related to school mathematics, and
that these partially cancel out by negatively impacting differentially on
both boys and girls. Furthermore, the lower female participation in higher
mathematics post-school remains a significant problem.
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Summary and provisional solutions

I have critiqued the idea that mathematics is an untrammelled force
for good, the third public myth about mathematics. Instead I offer the
metaphor that mathematics has two faces, the good and bad faces. The
good face displays the benefits and value of mathematics. I have argued
that mathematics is intrinsically a force for good, a creative development
of the human spirit and imagination. It is also good in its utility, for
it has many benefits in its social applications and personal value that
benefit human flourishing. But, more controversially I also claim that
mathematics has a bad face. It does harm through dehumanized thinking
which fosters instrumentalism and ethics-free governance. Also, because
of its over-valuation in the modern world through education it facilitates
social reproduction and the perpetuation of class-based social injustice.
Through its social image it aids the development of negative attitudes in
some learners, and its gender-biased image maintains social disadvantage
for females.

There are of course, in addition, ethically questionable and harmful
applications of mathematics, as there are of any scientific and techno-
logical subject. Thus, for example, mathematics, science and technology
are used in the manufacture of guns, explosives, nuclear and biological
weapons, battlefield computer systems, tobacco products, and other po-
tentially destructive artefacts and tools. But, there is a well known and
legitimate argument that it is only in the choice of applications of mathe-
matics in such activities that ethical considerations and violations emerge.
My critique is independent of such deliberate applications, and perhaps
even precedes them. I question and critique the views that mathematics
is a unique and unified objective discipline (myth 1) that is ethically and
socially neutral and value-free (myth 2), and that is solely a force for
good incapable of detriment and social harm (myth 3) These views that
I challenge, which I have termed myths hide the fact that mathematics
through its actions on the mind is already implicated in some potentially
harmful outcomes even before it is deliberately applied in social, scientific
and technological applications.

However, some caveats to this argument are required. First of all,
from the perspective that I term absolutist philosophies of mathematics,
the image of mathematics that I have condemned follows as a necessary
feature of mathematics emanating from its very nature. Although I and
some others reject the associated absolutist epistemologies and ontolo-
gies these remain legitimate philosophies of mathematics. Secondly, the
fact that the mindset fostered by mathematical thinking can lead to harm
when it is misapplied to social and other philosophical issues is a defect of
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human or social thinking, and not an intrinsic weakness of mathematics.
Thirdly, the damage done by social images of mathematics is mediated
by interpretations of mathematics, that is socially and personally con-
structed images of mathematics. These images are not inescapable logical
consequences of mathematics itself, for they can and have been different
in different societies and different historical times. Thus the force of my
critique is not directed at mathematics itself, but at the social institutions
of mathematics, including training in mathematics, and the false social
images of mathematics that they legitimate and project. The harm that
I am highlighting comes from what are largely unconscious misapplica-
tions of mathematics, including the modes of thought it generates, and
from the image of mathematics that many find excluding and off-putting,
as well as the overvaluation of mathematical achievement in school and
society.

Thus mathematics is not intrinsically bad or harmful, but as I have
argued, its applications, both conscious and unconscious can be detrimen-
tal to many. This provokes the question: how can we prevent, ameliorate,
or rectify this? In the space here I can only sketch a few possibilities for
addressing these problems. My two main proposals are that we should
include, in the teaching mathematics at all levels from school to univer-
sity, (1) elements of the philosophy of mathematics and (2) the ethics of
mathematics and its social responsibility

1. Teahing the philosophy of mathematis

My argument is that we should include selected aspects of the phi-
losophy of mathematics in the school mathematics curriculum and in
university mathematics degree courses. Students at all levels should have
some idea of proof and how mathematical knowledge is validated. This
includes knowing that no finite number of examples can prove a general-
isation, whereas a single counterexample can falsify it. Students need to
understand the limits of mathematical knowledge, including the follow-
ing: the certainties of mathematics do not apply to the world, there is
always a margin of error in any measurement; no mathematical applica-
tion or scientific theory can ever be proved true with certainty, and this
applies to any mathematical model of the world. Likewise we need to teach
the limits of mathematical thinking: the true/false dichotomies we find in
mathematics do not apply to the world, matters are almost never so clear
cut. In addition, students need to be aware that there are controversies
in the philosophy of mathematics over the nature of mathematics, the
basis and status of mathematical knowledge and mathematical objects;
that there are controversies over whether mathematical knowledge is ab-



Challenging three myths about mathematis [37℄

solute, superhuman with an existence that predates humanity, and over
whether the objects of mathematics exist in a superhuman Platonic space.
A live issue concerns whether humanly unsurveyable computer proofs,
such as that of the 4-colour theorem are indeed legitimate proofs. Strong
disagreements rage over whether mathematics is intrinsically value- and
ethics-free or value laden, and over whether it is invented or discovered. I
believe that elements of the history of mathematics and mathematics in
history can serve to make some of the above recommended points and to
humanize mathematics. This can be reinforced by illustrating the ubiq-
uity of mathematics in culture, art and social life. Overall, my proposal is
that students should see mathematics as more than just a set of tools, but
instead be shown that it is long-standing discipline with its own philo-
sophical issues and controversies, including human and ethical dilemmas,
as well the nature and validity of its knowledge.

2. Teahing the ethis and soial responsibility of mathematis

Although there is a widespread misperception that mathematics is
neutral and bears no social responsibility clearly its uses and applications
are value-laden. We should, in my view, add the ethics of mathematics to
all university mathematics degree courses so that mathematicians gain
a sense of its social responsibility. We need to teach that mathematics
must be applied responsibly and with awareness, and that it is wrong
to ignore or label its negative social impacts as ‘incidental’ outcomes or
as ‘collateral damage’, and permit them to be viewed as outside of the
responsibilities of mathematicians. In addition to teaching the ethics of
explicit mathematical applications we also need to teach that mathemat-
ics has unintended ethical consequences. Thus, we need to teach the limits
and dangers of instrumental thinking which mathematics can foster, and
how it can lead to dehumanized perspectives in which people are both
viewed and treated as objects.

Part of its social responsibility is to foster the public understanding of
mathematics. Mathematicians, and more widely the professional mathe-
matics community have the responsibility to promote the understanding
of mathematics and to counter misconceptions and misunderstandings
about the meanings and significance of the uses and applications of math-
ematics made public, especially in the media. Modern citizens should be
critically numerate, able to understand the everyday uses of mathematics
in society. As citizens, they need to be able to interpret and critique the
uses of mathematics in social, commercial and even political claims in
advertisements, newspaper and other media presentations, published re-
ports, and so on. Mathematical knowledge needs to be critical in the sense
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that citizens can understand the limits of validity of uses of mathematics,
what decisions are conveyed or concealed within mathematical applica-
tions, and to question and reject spurious or misleading claims made to
look authoritative through the use of mathematics. Citizens need to be
able to scrutinize financial sector and government systems and proce-
dures for objectivity, correctness and hidden assumptions. Ideally they
should able to identify the ethical implications of applications of math-
ematics to guard against the instrumentalism and dehumanization that
often accompany technical decisions. My claim is that every citizen needs
these capabilities to defend democracy and the values of humanistic and
civilised societies, and it is part of the social responsibility of mathematics
to help provide them.

A purist objection to such activities is, first of all, that they would
steal valuable time and thus detract from the teaching of mathematics and
second that these are not the responsibilities of mathematicians. With
respect to the first objection it can be said that what I am proposing is not
intended to take up even 2% of the time devoted to mathematics teaching
in schools and universities. At school, such issues can be brought up
within the mathematics curriculum periodically but without taking even
a whole lesson. A discussion of examples, models and applications can
lead to the issues being raised ‘naturally’, provided mathematics teachers
have been well prepared to do this. At university a small, time limited
course could be added as a mandatory course alongside pure, applied or
service courses in mathematics. Thus this objection can be met, the costs
in time could be very small, although the positive impacts in terms of
mathematicians’ and other mathematics users’ awareness of the social
responsibility of mathematics, could be significant.

With regard to the second objection it is first interesting to contrast
the received views about the responsibilities of mathematics and mathe-
maticians with parallel views about the social responsibilities of science
and scientists. Unlike the case in mathematics, there is widespread ac-
knowledgement of the social responsibility of science. Many have argued
that what they term the Promethean power of modern science and tech-
nology warrants an extended ethic of social responsibility on the part
of the scientists and technologists (Bunge, 1977; Cournand, 1977; Jonas,
1985; Lenk, 1983; Luppicini, 2008; Moor, 2005; Sakharov, 1981; Wein-
berg, 1978; Ziman, 1998). In particular, The Russell-Einstein Manifesto
called for scientists to take responsibility for developing weapons of mass
destruction and urged them to “Remember your humanity, and forget
the rest” (Russell and Einstein, 1955). This manifesto initiated the Pug-
wash meetings which emphasised “the moral duty of the scientist to be
concerned with the ethical consequences of his (sic) discoveries.” (Khan,
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1988, p. 258). When accepting The Nobel Peace Prize on behalf of himself
and the Pugwash conferences Joseph Rotblat stated “The time has come
to formulate guidelines for the ethical conduct of scientist, perhaps in the
form of a voluntary Hippocratic Oath. This would be particularly valuable
for young scientists when they embark on a scientific career.” (Rotblat,
1995). Thus Rotblat and his colleagues propose that ethics needs to be
included in the training of young scientists, a call that is echoed by many
others including Bird (2014), Evers (2001) and Frazer and Kornhauser
(1986). This call has been taken up authoritatively by UNESCO which
emphasizes the theme “Ethics of Science and Technology” (UNESCO,
n. d.), and according to which “The ethics and responsibility of science
should be an integral part of the education and training of all scientists”.
(UNESCO, 1999, section 3.2.71). Ziman claims that what is needed is
what he calls ‘metascience’, an educational discipline extending “beyond
conventional philosophy and ethics to include the social and humanistic
aspects of the scientific enterprise” (Ziman, 2001, p. 165). He argues that
metascience should become an integral part of scientific training in order
to help equip scientists of the future with the skills necessary to tackle
ethical dilemmas as they arise (Small, 2011).

The situation is rather different in mathematics with the exception
of the Radical Statistics group (n. d.), which publishes analyses of so-
cial problem topics with the aim of demystifying technical language and
promoting the public good. Generally, very few mathematicians acknowl-
edge the ethical and social responsibilities of mathematics, although there
is some acknowledgement of the social responsibility of mathematicians.
Hersh (1990, 2007) discusses ethics for mathematicians Davis (1988) pro-
poses a Hippocratic oath and the American Mathematical Society (2005)
provides Ethical Guidelines for mathematicians. However, the content
of these recommendations is primarily about professional conduct in re-
search and teaching for professional mathematicians. Davis (1988) goes
beyond this and argues that mathematics should not be put in the service
of war or other harmful applications, and mathematicians should exer-
cise their consciences. Ernest (1998, 2007) and Davis (2007) argue that
mathematics needs to acknowledge its social responsibility, with Davis
(2007) arguing for the need for ethical training throughout schooling for
mathematicians and non-mathematicians alike. These, however, repre-
sent marginal voices in the mathematical and philosophical communities
of scholars.

If one looks beyond mathematicians and philosophers to the area of
mathematics education, there are many voices asserting the social re-
sponsibility of mathematics. Of course it is uncontroversial to claim that
education is a value-laden and ethical activity, since it concerns the wel-
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fare of students and society, and the objectivity, purity and neutrality of
mathematics itself is not at stake. In consequence, there is a very large
literature comprising many thousands of publications on social justice
and social responsibility in mathematics teaching. 2 Some of the main
themes in this literature are mathematics and exclusion based on race
and ethnic background (Powell and Frankenstein, 1997), gender and fe-
male disadvantage (Rogers and Kaiser, 1995; Walkerdine 1988; 1998), low
‘ability’ and handicap as obstacles (Ernest, 2011) and disadvantages cor-
related with or caused by social class and its correlated cultural capital
or other factors (Cooper and Dunne, 2000). Another theme is the role
mathematics plays in critical citizenship and the public understanding
of mathematics (Frankenstein, 1990). A third theme is the Mathemat-
ics Education and Society (Mukhopadhyay and Greer, 2015), Critical
Mathematics Education (Skovsmose, 1994; Ernest et al., 2016) and Eth-
nomathematics (D’Ambrosio, 1998) movements which consider both the
role mathematics plays in society and how it impacts on the first two
themes. The Critical Mathematics Education movement also looks criti-
cally at mathematical knowledge and the institutions of mathematics and
their role in denying the relevance of ethics and values to mathematics,
and thus denying its social responsibility (Skovsmose, 1994; Ernest et al.,
2016). It shares this concern with the Philosophy of Mathematics Edu-
cation movement (Ernest, 1991, n. d.), if such can be said to exist, to
which this paper represents a contribution. However, within the math-
ematics education research community, beyond any commitment to the
teaching of mathematics in a socially just way, the idea that ethics needs
to be taught alongside mathematics remains a minority opinion, except
perhaps within research in the third theme distinguished here.

Conlusion

In this paper I question and challenge three interconnected ideas
about mathematics. First, I reject the idea that mathematics is a unique
and unified subject, arguing instead that it comprises a set of overlap-
ping epistemological knowledge domains and diverse social practices from
research mathematics to applied mathematics, school mathematics every-
day mathematics and ethnomathematics. Second I challenge the idea that
mathematics is absolute, universal value-free and ethics-free. This chal-
lenge follows from a critique of the traditional separation of epistemology

2. A very partial bibliography of mathematics education published 20 years ago has
over 800 mathematics education entries concerning the issues of society and diversity
(Ernest, 1996).
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and values, and links in with the first idea. Third, I argue that mathe-
matics is not an unqualified force for good. I acknowledge the traditional
argument that like any other instrument mathematics can be applied in
both helpful and harmful ways, and I acknowledge the many benefits it
brings. But I nevertheless endorse the minority view that mathemati-
cians and other students of mathematics need to be taught the ethics
of mathematical applications to question and limit harmful applications.
My main argument, however, is more radical. I argue that in addition
to the explicit and intended applications of mathematics, the nature of
mathematical thought and the role mathematics plays in education and
society lead to some presumably unintended but nevertheless harmful
consequences. Mathematics has a hidden role in shaping our thought and
society that is rarely scrutinised for its social effects and impacts, some
of which are negative.

First of all, there is the harm caused by the overvaluation of math-
ematics in society and education, with its negative impacts on the con-
fidence and self-esteem of groups of student including females and lower
attainers in mathematics. These unintended outcomes of mathematics
in school leave some students feeling inhibited, belittled or rejected by
mathematics and perhaps even rejected by the educational system and
society. In sorting and labelling learners and citizens in modern society,
mathematics reduces the life chances of those labelled as mathematical
failures or rejects (Ruthven, 1987). This is a hidden impact of mathemat-
ics that is usually brushed over as the fault of the individuals that suffer,
rather than as a direct responsibility of the role accorded to mathematics
in education and society.

Second, even for those successful in mathematics, in shaping thought
in an amoral or ethics-free way, mathematics supports instrumentalism
and ethics-free governance. Instrumental thinking leading to the objec-
tification and dehumanisation of persons in business society and politics
has the potential to cause great hurt and harm. This is manifested, in
warfare, the actions of psychopathic corporations, the exploitation of hu-
mans and the environment, and in all acts that treat persons as objects
rather than moral beings deserving respectful and dignified treatment
throughout (Marcuse, 1964).

I do not claim that mathematics is intrinsically harmful, but that
without more careful thought about its role in society it leads to harmful,
albeit unintended, outcomes. My proposal is that to obviate or prevent
the potential harm done by mathematics we need to teach the philos-
ophy and especially the ethics of mathematics alongside mathematics
itself. Part of this teaching is needed to overcome the myths that I have
challenged here, especially the idea that mathematics, unlike any other
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domain of human knowledge bears no social responsibility for its roles
in society, science and technology. All human activities should contribute
to the enhancement of human life and general well-being and no domain
can stand apart from such ethical scrutiny, although this should never
be used as a reason for limiting advances within pure mathematics itself.
However, the intended and unintended applications of mathematics and
their consequences do need to be scrutinised and held accountable within
the court of human happiness and human flourishing.
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Sientifi thinking versus religious thinking

from a view point of a seular siene eduator

Abstrat. In my paper I’ll characterize Science Education as a re-
search discipline. I will characterize scientific thinking versus re-
ligious thinking. The main difference is that scientific truths are
refutable whereas religious truths are irrefutable. Thus, relying
on Popper, we can consider religious thinking as pseudo-scientific
thinking. The talk will compare the contribution that science and
religion can offer to face the main problems of human beings: mor-
tality and suffering.

Science can hardly facilitate our dealing with the main problems of
human beings: mortality and suffering. On the other hand, the solutions
which religion offers to us have their own problematic.

As you can guess, I am quite old. And when people become old
they become reflective, they become philosophical, they become skep-
tical. They ask questions about their life projects. I consider myself a
civil servant in the field of education. I taught mathematics; I taught
mathematics education and I taught science education.

The reason for this is that I consider mathematics as part of science.
It is so because all sciences (including social sciences) use mathematics in
order to develop their theory. And also, their structure is quite similar to
the structure of mathematical theories, namely, the deductive structure.

In recent years I have asked myself what could be the contribution
of my teaching to the well being of my students. My main concern was
scientific thinking. On the other hand, there is a lot of religious thinking
around us and I wonder what this thinking could contribute to believers.
Thus, I have come to make the comparison between the two and hence
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Popper, pseudo-science, secular, atheist, Spinoza, pantheism, Euler, Hamlet, Diderot,
God, transcendental God, immanent God..
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the title of my paper: “Scientific thinking versus religious thinking from
a view point of a secular science educator”.

As an introduction I would like to elaborate on some notions in this
title.

1. Scientific theory is a theory which explains phenomena in our world
and in most cases is supported by experiments or facts. A scientific
theory can be refuted (remember Popper). On the other side, there
is also the notion of pseudo-science. A pseudo-science looks like a
science, but essentially, it cannot be refuted.
Some examples of pseudo-sciences are psycho-analysis, some parts
of biological evolution and religious explanations to phenomena in
our world (particularly, the creationist theory)

2. Religious thinking explains our world relying on religious texts. One
of the most common explanations relies on the claim that things
are the result of God’s will (the creator’s will).

3. Science Education is an ambiguous notion. On one hand it denotes
the act of teaching science to students and related activities such
as curriculum development, writing science textbooks, computer
software etc. On the other hand it is a research discipline which
investigates thought processes of students learning science and of
teachers teaching science.

4. By the term “secular” I mean somebody who does not believe that
God exists. For me the term “secular” has the same meaning as
“atheist”. Unfortunately, the term “atheist” has a negative conno-
tation. It is not politically correct. Therefore many atheists avoid
declaring themselves as atheists. They prefer to appear as pan-
theists. Pantheism is the belief that the universe (the totality of
everything) is identical with God. This idea is due to the Jewish
philosopher, Baruch Spinoza (1632-1677).
Nevertheless, since I believe that political correctness is very often
the enemy of truth, I will use “atheism” in this paper just to clarify
the distinction between religious people and secular people.

5. The view point of science educator in this talk is the view point of
somebody who tries to understand the thinking of religious people.

6. The religions which I will discuss are Judaism and Christianity.
From time to time, while being involved in theological discussions
with my gentile friends, I remind them that Jesus was Jewish and
was strongly influenced by the Jewish conception of life and the
world. Other religions which I hardly know, like Islam and Far East
religions will be mentioned shortly and superficially.
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7. Science education is interdisciplinary. It borrows various tools from
cognitive psychology, the psychology of problem solving, sociology,
philosophy of science and theology. It is not supposed to make in-
novations in those disciplines. Thus, in this paper I am borrowing
from those disciplines; I am not intending to make any innovations.

The purpose of this talk is to explain how scientific thinking as well as
religious thinking can help us to cope with our daily problems, physical
and psychological. In my opinion our main problems are health, mortality
and suffering.

I’ll start with scientific thought. Scientific thought offers us, among
other things, ways to cope with our health problems. It includes ways to
deal with our physical pain. Scientific thought also offers us explanations
about our physical world from the moment it was created till present.
It gave us the magnificent edifice of natural sciences which is also the
basis for medicine and technology. However, science does not help us to
cope with our psychological problems mentioned above: mortality and
suffering.

My main source for religious thinking will be the Bible which also
explains how the world was created and how all what we see here came
into being. So, let’s start with the religious explanation to the creation,
namely, with Genesis, chapter 1.

At the end of six day work God was quite satisfied. “God saw every-
thing that he had made and, behold, it was very good” (Genesis, 1, 31).

As a matter of fact, God was the only one who was satisfied. Adam
and Eve were not cognitively ready to make any evaluation at this stage.
Why? Because they had not eaten from the tree of knowledge of good
and evil. At this point, they were not aware of their mortality. God was
aware. But God did not think it was negative. However, Adam and Eve
realized their mortality after eating from the tree of knowledge and they
thought it was horrible.

This takes me directly to Ecclesiastes. It is the most pessimistic book
which I know. It is pessimistic because of the writer’s understanding that
he is mortal. If I have to pick up a typical quotation from Ecclesiastes
I will choose chapter 9, 4-6. “A living dog is better off than a dead lion!
The livings know that they will die, but the dead know nothing; their
love, their hate and their jealousy have long since vanished.”

The mortality situation leads us to the following million dollar ques-
tion: If we eventually die why are we born for? And if we are born what
is the point of ending our life?

Is there a way to solve this dilemma? Well, there is a simple solution.
It is based on the distinction between body and soul.
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It is quite interesting that there is a hint to this distinction in Eccle-
siastes. “And the dust returns to the ground it came from, and the spirit
returns to God who gave it” (Chapter 12, 7).

However, Ecclesiastes himself, probably, was not convinced. If I am
allowed, I would like to make a wild assumption here. Ecclesiastes has a
realistic way of thinking. This is in a way, a scientific way of thinking.
Namely, thinking which considers facts. The idea that there is a place to
which souls go after the death of the body has no support in our world.
Thus if you don’t accept this idea, what is the answer to the above million
dollar question?

The answer is quite pessimistic: Without being asked we are born and
eventually we have to die. Can we carry on our life with this message?
For many of us it is unacceptable. This leads us to the search for the
meaning of life. Here is an accidental list of 5 references which deal with
this question:
The Meaning of Life (Klemke, 1981);
The meaning of it all (Feynman, 1998);
Man’s Search for Meaning (Frankl, 1959);
Momma and the meaning of life (Yalom, 1999);
The Meaning of Life (Eagleton, 2007).

Here is a quotation from a review of Eagleton’s book.
How can an English professor and literary critic (that’s Eagle-

ton) write a philosophical brief on the meaning of life? Well, Terry
Eagleton did, and did it well.

He takes us through the end of Victorian certainty and shows
how Hardy and Conrad raised questions with a sense of urgency
that Jane Austin never had. In the early decades of the 20th Cen-
tury, T. S. Eliot and Camus and Sartre brought challenges to all
our values, beliefs and institutions.

Most in the West have now accepted the view that life is an acci-
dental evolutionary phenomenon with no intrinsic meaning. Rather
than lament the loss of being part of God’s design, which was of-
ten impenetrable, this clears the ground for us to give life meaning
whatever we choose.

A starting point is realizing that life is not a problem to be
solved; if we are being practical, it really becomes more an ethical
issue than metaphysical. We should be more concerned about what
makes life worth living, what adds quality, depth, abundance, and
intensity. Eagleton’s suggestions point us towards a direction we
have heard before, caring for others, compassion, becoming truly
engaged. And, that is what has occupied the great novelists, poets
and artists of all ages.



Sientifi thinking versus religious [55℄

Unfortunately, some people do not want to follow Eagleton’s altruistic
recommendations. Their way to cope with the evolutionary claim that life
is meaningless by denying it. This is easily done by drinking alcohol, by
smoking grass and using other drugs. Li-Tai-Po (701-762), a Chinese poet
whose poems were used by the Czech Jewish composer Gustav Mahler,
writes:

Wine is already beckoning in the golden goblet,
But do not drink yet:
First I’ll sing you a song!
The song of grief shall sound,
Laughing, in your soul:
When sorrow approaches, the gardens of the soul lie withered,
Joy and song fade and die.
Dark is life, dark is death.

Thus if life is only suffering, what meaning does it have? Here is another
question about the meaning of life taken from the famous movie “Hair”:

Wine is already beckoning in the golden goblet,
But do not drink yet:
First I’ll sing you a song! The song of grief shall sound,
Laughing, in your soul:
When sorrow approaches, the gardens of the soul lie withered,
Joy and song fade and die.
Dark is life, dark is death.

However, many people make a real effort to find a meaning to their
life. Here are three examples.

The first one is a scene from Woody Allen’s movie “Hanna and her
sisters”. Allen, after his medical doctor told him he did not have brain
cancer, realizes that he is mortal. He returns to his secretary and tells
her about his discovery and about his need to find a meaning to his life.
Allen is denoted by A and the secretary is denoted by S. The following
dialogue takes place:

A: Do you realize on what a thread our life is hanging by?
S: Micky, you are off the hook. You should be celebrating.
A: Do you understand how meaningless is everything, everything I am

talking about? Our life, the show, the whole world are meaningless.
S: But you are not dying.
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A: Now! I am not dying now, but. . . Do you know? When I ran out of
the hospital I was so thrilled because they told me I was going to be
alright. But being on the street, suddenly I stopped because it hit
me: I won’t die today, I am OK. I am not going to die tomorrow,
but eventually, I am going to be in this position.

S: Are you realizing it just now?
A: I do not realize it just now. I knew it all the time, but I managed

to stick it in the back of my mind, because it is very horrible thing
to think about. Can I tell you something? Can I tell you a secret?

S: Please!
A: A week ago I bought a rifle. Do you understand? I bought a rifle

because if they would have told me I have a tumor I was going
to kill myself. The only thing that might have stopped me is my
parents. I would have to shoot them also first and then my uncle
and my aunt, bloodshed.

S: Eventually, this is going to happen to all of us.
A: Yes, but doesn’t it ruin everything for you? Doesn’t this take the

pleasure of everything? I am going to die, you are going to die, the
audiences are going to die, the net, the sponsor...

S: I know, and your hamster. Listen, I think you snapped a cap. Go
to few weeks in Bermudas or go to a hoar.

A: I can’t stand the show. I have to get some answers.

Allen’s solution to his existential problem is looking for God within the
walls of the Catholic Church. The following dialogue takes place at the
priest office. The priest is denoted by P and Allen is denoted by A.

P: Well, why do you think you have to convert to Catholicism?
A: Well, because, you know, I have to believe in something, otherwise

life is just meaningless.
P: I understand, but why did you make the decision to choose to the

catholic faith?
A: You know, first of all it is a very beautiful religion, it is a strong

religion and it is very well structured. I am talking now against
school prayers, anti-abortion and nuclear war.

P: But at the moment you don’t believe in God. . .
A: No, and I want to. I am ready to do everything. I am ready to dye

Easter eggs if it works. I need some evidence. I have to get some
proof. If I don’t believe in God I think life is not worth living.
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P: It means a very big leap.
A: can you help me?

A relatively easy way to deal with the mortality problem is the idea of the
next world, or in Jesus’ terminology, the heavenly kingdom. However, the
claim about the next world is a pseudo-scientific claim. Namely, according
to Popper’s criterion, it cannot be refuted. Probably, this is the reason
why there are so many people who are ready to buy it. It brings some
relief to their fear to die.

Beside the fear to die there is another problem for many people, which
is the suffering problem. Especially, the suffering of people who have tried
to follow all the commands of God and are expecting to be rewarded by
God for their good deeds. Thus, by inventing the Heavenly Kingdom,
Jesus has killed two birds in one shot: He, supposedly, cured us from
our fear to die. And also he promised us a huge compensation for our
suffering. No wonder why so many people all over the world converted to
Christianity. In order to overcome the danger that also Jews would adopt
Christianity, the idea of the next world was adopted also by Judaism.
Note that the idea of the next world does not exist in the Jewish Bible
(the Old Testament).

Now, the existential situation of human beings is the following: We
hate dying but we also hate suffering. However, ironically enough, death
can liberate us from our suffering. The question is quite simple: which
emotion is unbearable? Our fear to die or our suffering?

Hence, when suffering overcomes the fear to die suicide is recom-
mended. Here are some examples from the Jewish history:

1. King Saul (1 Samuel, Chapter 31) committed suicide when he real-
ized that he lost the battle with the Philistines and they were going
to capture him.

2. Ahitophel (2 Samuel, chapter17) committed suicide after his mili-
tary recommendation was not accepted by Absalom in his rebellion
against King David. Ahitophel could not bear the humiliation and
he hanged himself.

3. The defenders on Mount Masada and their families committed a
collective suicide when they realized the Romans were going to win
the battle and as a result they would be taken to Rome as slaves.

The suicide option is also suggested by Shakespeare in Hamlet’s ulti-
mate monologue:
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To be, or not to be–that is the question:
Whether ’tis nobler in the mind to suffer
The slings and arrows of outrageous fortune
Or to take arms against a sea of troubles
And by opposing end them. To die, to sleep;
No more; and by a sleep to say we end
The heartache, and the thousand natural shocks
That flesh is heir to, ’tis a consummation
Devoutly to be wished. To die, to sleep;
To sleep: perchance to dream: ay, there’s the rub,
For in that sleep of death what dreams may come
When we have shuffled off this mortal coil,
Must give us pause. There’s the respect
That makes calamity of so long life.
For who would bear the whips and scorns of time,
The oppressor’s wrong, the proud man’s contumely
The pangs of despised love, the law’s delay,
The insolence of office, and the spurns
That patient merit of the unworthy takes
When he himself might his quietus make
With a bare bodkin? Who would fardels bear,
To grunt and sweat under a weary life,
But that the dread of something after death,
The undiscovered country, from whose bourn
No traveler returns, puzzles the will,
And makes us rather bear those ills we have
Than fly to others that we know not of?
Thus conscience does make cowards of us all,
And thus the native hue of resolution
Is sicklied o’er with the pale cast of thought,
And enterprises of great pitch and moment
With this regard their currents turn awry
And lose the name of action.

It is interesting that Shakespeare does not mention diseases as a rea-
son for suicide. We can wonder why that is. Is it because Shakespeare
was not aware of diseases or because of literary reasons? After all, Shake-
speare did not write an academic essay about reasons to commit suicide.
He wrote a play. Nowadays, many terminal patients prefer to die than
to go on with their terrible suffering. However, being so helpless, these
patients cannot commit suicide by themselves. They need help. But only
in few States all over the world it is legal to help people to commit sui-
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cide. This is only a by the way comment. Hamlet did not commit suicide
because he wanted to find out what caused his father’s death. Among
the reasons which justify suicide in Hamlet’s monologue there is despised
love. Unfortunately, it is demonstrated by Ophelia in Act IV, Scene 5.
Hundred and seventy years later, also Werter, the hero of Goethe, as well
as Anna Karenina, Tolstoy’s heroine, and Madame Bovary, Flaubert’s
heroine, committed suicide because of despised love.

Before moving on to the next issue I would like to remind you of two
notions from the science of religions. The first one is Transcendental God.

The transcendental God is the God who created the world and after
that he stopped being involved in events in our world. The concept of
transcendental God and Pantheism are almost the same in my opinion.

The second notion from the science of religions that I would like to
use is the notion of Immanent God. The immanent God is supposed to
interfere with events in our world. Namely, He is supposed to reward the
people who follow his commands and to punish the sinners.

The situation of somebody who is convinced that he did not do any-
thing wrong and in spite of that his suffering is unbearable is quite typical.
There are two Biblical figures that raised this problem protesting against
God: Jeremiah and Job. In chapter 12, 1 of Jeremiah he says: “You are
always righteous, Lord, when I bring a case before you. Yet I would speak
with you about your justice: Why does the way of the wicked prosper?
Why do all the faithless live at ease?” Jeremiah preferred to pose his ques-
tion in a general way. He did not mention that he was the one who was
persecuted by the wicked. On the other hand, Job’s complaint is personal.
He wanted to know why he was suffering. Also for him death was sug-
gested as a solution to his suffering. It was suggested by his wife. “Curse
God and die” (Chapter 2, 9), she advised. Job refuses. But his general
mood is the same as the mood of the prophet Jonah (chapter 4, 30): “It
is better for me to die than to live”. In chapter 3, 11-13 Job says: “Why
died I not from the womb? Why did I not give up the ghost when I came
out of the belly? Why did the knees prevent me? Or why the breasts that
I should suck? For now should I have lain still and been quiet, I should
have slept: then had I been at rest” (King James translation).

A similar mood is expressed in Psalm, chapter 22: “My God, my God,
why hast thou forsaken me? I am a worm, . . . and no man; . . . For dogs
have compassed me: The assembly of the wicked has inclosed me: they
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pierced my hands and my feet.” By the way, this last sentence does
not exist in the Hebrew version of Psalm 22, nor in the English Version
which was made by the Gideons.

My assumption is that king James’ translator, being aware that Je-
sus referred to Psalm 22 while suffering on the cross, and being a good
Christian, he decided to add this sentence to the text because it describes
accurately the crucifixion. And for Jesus, feeling he was abandoned by
God, it was only natural to chose Psalm 22 to express his unbearable pain
on the cross. Indeed, “My God, my God, why hast thou forsaken me?”
were Jesus’ last words on the cross before he died.

A possible answer to Jeremiah’s question as well as to Job’s question
is that God moves in mysterious ways. This is beautifully expressed by
Job’s words: “Therefore have I uttered that I understood not; things are
too wonderful for me, which I knew not” (Chapter 42, 3). In the book of
Job God relates to Job’s complaint by the following:

“Where were you when I laid the earth’s foundation?. . .Who marked
off its dimensions?. . .Who shut up the sea behind doors?. . . Have you
ever given orders to the morning or shown the dawn its place?. . . Have
you comprehended the vast expanses of the earth?” (Job, chapter 38). If
I try to formulate God’s answer to Job’s complaint in our daily language
it will be something like: Who are you to question my ways of conducting
the world?

Nevertheless, in case you are not satisfied with the way the book of
Job is ended, and you still want to deal with the difficulties it poses to
the idea of an immanent God, there is another way to cope with Job’s
tragedy. It is to claim that Job did not exist. It is only a story. But for me,
as a secular reader, even if it is only a story, God doesn’t come out so good
from it. God bets with Satan that Job will not lose his faith, no matter
what happens to him. Thus, he lets Satan destroy Job’s entire property,
he lets Satan kill Job’s ten children and make him sick. Moreover, even if
Job is only a story, we, unfortunately, have met and have heard of many
people whose suffering was as bad as Job’s suffering.

Moving from the biblical era to our time, the idea of immanent God
faces enormous difficulties when considering the horrible events of geno-
cides in Auschwitz and in other places all over the world. And again,
the only way to justify it is by claiming that we, human beings, cannot
understand the ways God operates our world.
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The bottom line at this point of my paper is that the secular think-
ing is much simpler than the believers’ thinking since it does not have to
cope with all the above mentioned problems. This is not a call to believers
to abandon their belief. Sometimes, when I discuss these issues with my
students, some of them try to convince me that God exists. A common
argument for Islamic students is that the Koran is so beautiful that only
God can write such a text. Since this is claimed in a science education
course I remind my students that in science we have to examine all the
time alternative hypotheses. Thus, a simple alternative hypothesis to the
last one is that some human beings have such a wonderful literary talent
that they can write such a beautiful text as the Koran. This of course
does not convince them. They stick to their belief and I stick to mine.
Another proof for the existence of God is like the following: Consider
things around you, furniture, buildings, cars etc. All of them were con-
structed by somebody. Is it possible that the entire world was not created
by somebody? Unfortunately, also this proof is not valid. It is impossible
to conclude from the fact that a table is constructed by a carpenter that
also the world has a creator. Such conclusion is to assume what you want
to prove.

In the history of the theological debates about the existence of God
there is a story about a debate between Euler, the religious, and Diderot,
the atheist. This debate was initiated by Catherine the Great (1729-
1796), the Czar of Russia, a religious lady, who was disturbed by the
French atheistic movement. She invited Diderot, a philosopher and one
of the main leaders of the atheistic movement, to argue with Euler about
the existence of God. Euler said: [(a + bn)/x] = x therefore God ex-
ists. Diderot, whose mathematical knowledge was almost zero, realized
he could not contradict Euler’s argument and, therefore, he returned to
Paris. This anecdote tells us something about Euler. First, in order to win
the debate he did not avoid unfair means. But moreover, being a math-
ematician (one of the greatest in mathematical history), he knew that
what he said could not be a proof that God exists. Namely, he believed
in God not because there was a proof that God exists but because he
chose to believe in Him. There are more proofs for the existence of God.
For instance, God appeared to me in my dream. Again, to my science
education students who claim it I say: Can you suggest an alternative
interpretation to the fact that you have dreamt about God rather than
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the claim that God exists? Have you heard about Freud?
Thus, when I try to convince my students that there is no proof

for the existence of God, some of them don’t believe me. Others, who
developed critical thinking, understand it. Is the belief in God weaker
when somebody realizes that there is no proof for His existence? I really
don’t know.

However, in my opinion, the real question is not whether God exists.
The real question is whether God is needed. And the answer to this
question is Yes (with Capital Y). Everybody needs Him, the religious as
well as the atheists. For me, as an atheist, he is a metaphor. But I am also
inspired by literary texts in which God is the main figure. I am inspired
by the Bible, and I am inspired by musical compositions as masses and
requiems, some of which were composed by secular composers as Berlioz
and Verdi.

By saying this I have almost reached the end of my paper. I would
like to summarize it with the following comment:

As a secular science educator I have tried to compare religious think-
ing to scientific thinking about the essential aspects of life. I have revealed
my own thinking. My claims about the thinking of religious people on
these issues are mere speculation. Hence, I would like to invite religious
science educators to react to this talk and to reveal their thinking about
the above issues. You are invited to send me an email. My email address
is: vinner@vms.huji.ac.il

And finally an apology: I apologize for involving you with an unpleas-
ant topic – our mortality. However, we face death almost every day. We
go to funerals, we write wills and so on and so forth. I believe that most of
us cope with these facts by adopting Jan Francois Vilar’s famous claim:
C’est toujours les autres qui meurent. And in English: It is always the
other people who die.

And with this happy note let us return to our homes and families and
enjoy our life as much as we can.
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Abstrat. During the first part of the lecture, we will study, from a
theoretical point of view, the issue of transgression as an expected
response given by a pupil, but unrequired by the teacher. This phe-
nomenon is the paradoxical result of the contract which forms dur-
ing any didactical relationship: “this is what you have to know, and
from now on, think for yourself to show that you are able to create
new uses out of what you have been taught; in other words, act in
accordance with what I have taught you, but don’t obey me!”. So,
transgression will be considered as a necessary condition for learn-
ing mathematics (different from the use of techniques, algorithm,
and rules) whose conditions of existence stand at the crossroads
of determinations which are both didactical (with reference to “the
paradox of devolution” as defined by Guy Brousseau in the theory
of didactical situations) and anthropological (with reference to the
concept of “use” in Wittgenstein’s anthropology and to his famous
rule-following paradox).

During the second part, we will base our argument on various
research in order to underline:

a) the relevance and the interest of this theoretical approach in
order to gain a better understanding of the reasons for pupils’
and teachers’ recurrent difficulties (for example, “you know
the lesson, the teacher says, but you didn’t understand it.”),
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and the reasons why some of the means intended to regulate
these difficulties fail, and

b) the role of “backgrounds” (in the Searlian meaning of the
word), such as familial educational practices and the didac-
tical and pedagogical cultures of school environments (which
are linked to values, beliefs, epistemological and pedagogi-
cal conceptions of the teachers) in order to account for the
appearance of interindividual differences concerning the re-
lations with transgression, and clarify the ways we can go
beyond the initial paradox.

In conclusion, we will promote the idea of a “normative trans-
gression” to describe this phenomenon of the sudden appearance
of new creations (“transgressive” dimension) which are expected by
the teacher and lived by the pupil as a measured disobedience, for it
is basically in accordance with the “account books” of mathemati-
cians (normative dimension). This is probably where the fascinating
and singular essence of mathematical activity stands, between logi-
cal constraints and the boundless openness of creative possibilities.

Introdution

Le sens de «transgression » est très variable selon les cultures, les
époques, les situations . . . à tel point qu’il est très difficile de savoir ce
qu’il désigne. Je prendrai ici « transgression » dans son plein sens éty-
mologique : est transgression toute action qui franchit, qui traverse, qui
dépasse . . . une « limite » (à l’origine, il a donc un sens très proche de
« transmettre » (faire passer au-delà, de l’autre côté) mais aussi « trans-
cender » (monter en passant au-delà, dépasser, franchir . . . ) ; ce n’est que
bien plus tard que « transgression » prendra le sens de « désobéissance »
ou de « violation ». Pour le dire rapidement, je situerai la transgression
dans le rapport qu’un individu établit avec ce qu’il considère comme un
représentant d’une institution (institution étant pris ici au sens d’une ins-
tance symbolique qui rend légitime une norme, une règle, une loi . . . )̃.

La transgression n’est à confondre avec la désobéissance : je réserverai
ce terme à toute l’action d’un individu qui viole intentionnellement un
interdit posé par un autre individu.

Il n’y a pas de désobéissance sans une intention : celle de ne pas
respecter un interdit : la désobéissance suppose donc la connaissance de
l’interdit (les enfants ne s’y trompent pas lorsque après avoir fait une
bêtise se réfugient dans l’ignorance : « Je ne les avais pas ! »).
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Figure 1.

Par exemple, il n’est correct pas de dire que le renard « vole » ces
gâteaux, qu’il désobéit à l’interdiction de s’approprier sans autorisation
le bien d’autrui. Il les prend simplement.

Ainsi, on dira qu’on transgresse une norme, une loi . . . mais qu’on
désobéit à une personne en ne respectant pas l’interdit qu’elle a posé.

Cette distinction n’a aucune prétention universelle ou historique ; elle
a seulement un intérêt pragmatique : elle permet de préciser le sens dans
lequel j’utiliserai ces termes dans la conférence. Par exemple, désormais
vous pouvez comprendre le sens dans lequel j’emploie ces termes dans les
phrases suivantes :

– « Eve désobéit à Dieu mais transgresse la loi dont il est porteur »
– « Prométhée est puni pour avoir transgressé les lois divines, mais

pas pour avoir désobéi à Zeuset pour avoir transmis le savoir aux
Hommes »

La deuxième remarque concerne la nature de la limitede la transgres-
sion.

Limite peut-être employée en deux sens :
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1. Au sens d’une borne infranchissable, vers laquelle on ne peut que
tendre. Par exemple : 299792458m/s est la vitesse limite pour les
particules qui ont une masse nulle, etc.

2. Prise dans le sens de frontière, une limite borne alors deux espaces
distincts ; elle marque la frontière entre deux espaces, entre deux
territoires, entre deux états . . . Par exemple, il est facile d’imaginer
une situation où il faudrait tuer quelqu’un pour en sauver plusieurs
autres et pourtant « Le commandement éthique dit : tu ne tueras
point. Il ne dit pas : tu ne tueras point, sauf si . . . Il dit : tu ne
tueras point, point. » (cf. Castoriadis,1996 ; Rorty, 1993, 16).

Il convient d’être extrêmement attentifs à ne pas amalgamer les deux
usages car la première est indépassable et donc ne peut être transgressée
car l’interdit n’a aucun sens mais seulement une impossibilité ; alors que
le second sens, la limite est non seulement contingente, mais elle est aussi
variable selon les époques, les lieux, les cultures . . .

La transgression atteste de la dimension factice de la limite et de
l’arbitraire de l’interdit ; elle montre bien que la limite n’en était pas
une au sens 1 (de l’impossibilité) puisqu’elle s’est avérée franchissable ; la
transgression transforme donc les limites en frontières.

C’est en cela que la transgression est toujours démesure, dépasse-
ment . . . et ce faisant, elle permet d’interroger après-coup la validité et
la légitimité . . . des interdits qu’elle posait. La possibilité (comme éven-
tualité) de la transgression pose donc le sujet comme responsable de sa
décision : il est libre de la prendre ou de la rejeter : en cela, la trans-
gression n’est pas immorale en tant qu’elle ne maltraite pas les normes,
mais par le dépassement qu’elle opère, par sa démesure, la transgression
transforme les normes mais sans les détruire.

La transgression dénaturalise les normes en révélant leur caractère
construit. Doit-on rappeler ici le supplice infligé par les Chrétiens à cette
philosophe et mathématicienne grecque Hypatie (370-415), qui eut sim-
plement tord d’avoir raison. Nicolas Copernic n’a-t-il pas refusé de publier
son œuvre majeure durant sa vie ? Eve transgresse la loi, désobéit à Dieu,
mais ce faisant marque l’existence du libre-arbitre : c’est paradoxalement
l’interdit qui crée la condition de notre liberté : c’est d’ailleurs particuliè-
rement flagrant dans le cas des mathématiques car nul autre secteur de
la culture pose des contraintes aussi formelles et aussi puissantes qu’en
mathématiques : c’est d’ailleurs une des raisons pour laquelle elles consti-
tuent un espace infini de créations !

Le troisième repère est celui de la contextualisation de la question de
la transgression dans le champ de l’éducation mathématique. A priori, la
transgression n’a aucune place dans champ de l’éducation puisque l’édu-
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cation est le processus de transmission des normes, valeurs et des savoirs.
En effet, comment peut-on à la fois vouloir transmettre et faire une place
à transgression dans ce processus ? La réponse à cette question occupera
la première partie de ma conférence mais je poserai dès maintenant un
troisième repère. « Apprendre », comme « aimer » sont des verbes qui
ne supportent pas l’impératif ! L’élève ne peut jamais être contraint d’ap-
prendre ou de comprendre. Et pourtant on exige de lui à la fois obéissance
(« Fais ceci, retiens cela . . . ») 2 mais en même temps on exige aussi qu’il
raisonne par lui-même. C’est bien cette double exigence que l’on retrouve
chez Kant quant il articule les deux types d’usage de la raison : l’usage
privé correspondant à celui que doit en faire l’homme librement en tant
qu’individu, et l’usage public par lequel l’homme doit être en accord avec
les règlements de la communauté à laquelle il appartient. Autrement dit,
dans le champ même du savoir, la seule limite que je puisse rencontrer
c’est celle du désir, du désir de savoir ! C’est précisément ainsi que Piera
Aulagnier définit la transgression : elle est ce qui réalise « cette visée du
désir de ne rencontrer aucune frontière à son champ d’action, quoi qu’il
sache et quel que soit l’infini de son désir de connaître, il ne manquera
jamais d’objet à interroger ni un dernier voile à soulever. Le manque à
savoir est ce qui ne manquera jamais à son désir » (Aulagnier 1967). Au-
trement dit, on en a jamais assez de savoir car, comme l’a bien montré
Freud, Lacan . . . ce désir de savoir se nourrit de « l’énergie du plaisir
scopique » (Freud, 1987, 123), et conduit à maîtriser les incertitudes at-
tachées aux situations (c’est ce montre Freud dans le Fort-da). C’est une
des raisons pour laquelle le savoir à toujours partie liée avec l’interdit
(Le pêché originel, Umberto Ecco Le nom de la rose) et donc avec la
transgression.

1. Transgression et réation

Si une société, un collectif, une famille . . . ne peuvent transmettre
que l’existant, alors toute création exige une transgressionpuisqu’il s’agit

2. Les élèves sont toujours tenus de fournir des indices de leur volonté d’adhésion
au projet d’éducation ; comme le dit Weber de toute personne qui appartient par
naissance et par éducation à une institution « on attend d’elle qu’elle participe à
l’activité communautaire et tout particulièrement qu’elle oriente son activité d’après
les règlements, et en moyenne on est en droit d’attendre cela d’elle, parce que l’on
estime que les individus en question sont ‘obligés’ empiriquement de prendre part à
l’activité communautaire constitutive de la communauté et qu’on y rencontre la chance
qu’ils sont tenus de le faire sous la pression d’un appareil de contrainte (si douce que
soit sa forme), éventuellement męme contre leur gré. » (Weber, 1992, 353).
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de faire exister l’inexistant, de rendre visible le caché. Or, la psychanalyse
montre bien que le caché a toujours entretenu un commerce subtil avec
le savoir et le désir : le sujet ne peut désirer que ce qu’il n’a pas, ce qui
se dérobe à lui, ce qui lui est caché. Tel est là un des moteurs puissant
de la création en quête de savoir : un savoir pour voir ! Le caché a consé-
quemment toujours été frappé d’interdit : souvenons-nous de la Genèse
de la Bible, l’arbre de la connaissance, ou encore de ce beau roman de
Umberto Eco, Le nom de la rose ; songeons aussi aux enfants, à leur at-
tirance particulière pour l’interdit ou le caché . . . c’est dans cet espace
que naît ce « désir de voir » que Freud appelait « pulsion scopique »
(1987, 123). Ainsi la création est toujours transgression : transgression
des normes pour voir autrement, transgression des interdits en s’autori-
sant soi-même à voir ce qui est masqué. Or, la transgression – et donc
la création– ne peut être le produit d’une injonction, l’exécution docile
d’un ordre : Désobéissez ! Thomas Khun (1983) parle à cet égard des
« révolutions de scientifiques », « révolution » au sens de considérer les
choses autrement, sous un autre angle ; ce fut par exemple le cas de An-
drew Wiles qui considéra la conjecture de Fermat à partir des travaux de
Galois et de Taniyama-Shimura (Singh, 1998). Tel est le troisième para-
doxe : créer, c’est s’autoriser, c’est décider de devenir auteur, c’est-à-dire
adopter la posture de « celui qui fonde et établit » – en latin auctor dési-
gnait Dieu, un Dieu créateur. Mais s’autorisersuppose que le sujet soit
autonome et libre mais, on l’a vu, cette liberté n’est possible que dans
le cadre d’une culture nécessairement collective. Ce paradoxe trouve son
expression philosophique dans la célèbre formulede Kantcaractéristique
de l’esprit des Lumières : « Raisonnez autant que vous voulez et sur ce
que vous voulez ; mais obéissez ! » (1991, 50). Un joueur de hockey, un
peintre, un musicien comme un mathématicien, est libre dans sa ma-
nière de jouer mais pas dans la définition du jeu auquel il participe ; sa
liberté de joueur n’est possible que s’il s’assujettit aux règles qui fixent
les conditions de possibilité de son jeu au sein d’une communauté (celle
des mathématiciens, des hockeyeurs, des cuisiniers ou romanciers . . . ).
C’est dans cet entre-deux, entre la liberté individuelle et les contraintes
collectives propres au jeu, entre la dimension structurelle du jeu et la
manière de jouer que se situe l’espace de la création. Mais répétons-le,
la création est loin de se réduire à la nouveauté, elle doit aussi présenter
un intérêt, une valeur pour l’institution ou la communauté dans laquelle
elle apparaît : en cela, elle est toujours une rencontre entre une culture à
un moment donné et le désir singulier d’un sujet nourri par le terreau de
cette culture ; le phénomène est classique dans l’enseignement : les pro-
fesseurs font (souvent silencieusement) le tri entre ce qui doit être retenu
et oublié (c’est d’ailleurs ainsi que se crée la mémoire didactique de la
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classe– Brousseau, 1998). Cet espace de création a donc un prix pour le
professeur : celui de la nouveauté sans prix ou d’une nouveauté margi-
nale, d’un possible surgissement de ce que J. Giroux (2008) appelle les
« conduites atypiques » 3.

La création mathématique exige donc du jeu c’est-à-dire un espace de
liberté limité à la manière du jeu des gonds : sans jeu la porte ne peut
s’ouvrir, trop de jeu la porte ne ferme plus.

2. Connaissane et savoirs : Les mathématiques toutes faites sont

des mathématiques mortes

Saviez-vous que les corbeaux sont des êtres prodigieusement intelli-
gents ! Certains même, les appellent les hominidés à plume. Ils sont ca-
pables par exemple de dénombrer des collections jusqu’à 17 ! Comment
le sait-on ? Un jour deux éthologues voulaient étudier leur comportement
dans leur milieu naturel, ils se donc sont installés dans une cabane avec
leur matériel d’observation. Evidemment, les corbeaux se sont enfuis et
nos éthologues ont attendus leur retour. Les corbeaux ne revenant pas,
l’un des deux éthologues dit à l’autre : « Je vais sortir, ainsi ils revien-
dront ». C’est ce qu’il fit mais les corbeaux ne revenaient toujours pas.
Alors l’autre sortit à son tour et quelques minutes après les corbeaux
étaient de retour. Etonnés, ils recommencèrent l’expérience avec 3 per-
sonnes puis avec 4 et 5 éthologues . . . les corbeaux ne revenaient toujours
pas dès que le dernier n’était pas sorti ! Les corbeaux commencèrent à se
tromper à partir de 18 !

Si j’avais plus de temps, je pourrais aussi vous raconter comment
les corbeaux sont capables de résoudre des problèmes plus complexes :
comment ils sont capables d’anticiper, de planifier des actions . . . bref,
les corbeaux réalisent des apprentissages extrêmement complexes dans
des situations extrêmement variées ! Mais alors comment se fait-il que
les corbeaux n’aient pas progressé dans leurs connaissances comme les
hommes l’ont fait, alors même qu’ils sont capables d’une extraordinaire
plasticité cognitive ?

La réponse est certainement très complexe mais je pense avoir au

3. Elles ontcomme caractéristiques : « 1. Caractère marginal ; 2. Non adaptées aux
contraintes ; 3. Spécifiques à l’enjeu de la situation mathématique », c’est d’ailleurs en
cela qu’on peut les considérer comme relevant du domaine didactique. Elles ne sont
pas assimilables à une « conduite inefficace ou déviante » ou « inadaptée au problème
proposé », et comme le précise, J.Giroux, elles « témoignent du rôle de la dimension
antagoniste du milieu [de la situation] » et « sont donc corollaires de l’appropriation
d’un véritable enjeu de la situation. ».
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moins un élément de réponse : contrairement aux hommes les animaux ne
capitalisent pas ce qu’ils ont acquis : il peuvent transmettre par ostension,
par imitation . . . bref, ils transmettent toujours dans une co-présence,
dans une interaction immédiate (ie sans médiation) et ne gardent jamais
une mémoire de ce qu’ils ont acquis pour la transmettre : c’est cette mé-
moire collective et collectivement constituée que nous appellerons « sa-
voirs » ; les savoirs sont des formes instituées (au moins collectives) qui
permettent de désigner (et de mémoriser donc) des manières d’agir, d’être,
de faire, de sentir, de percevoir . . . mais ce ne sont que des coquilles vides,
des formes inertes, sans vie, des promesses d’action : e n’ai que le verbe
« aimer » pour dire que « j’aime ma femme, ma fille, ma mère . . . le
poulet-frite, le hockey sur glace, Bach ou les mathématiques » et l’ex-
pression « Je t’aime » est bien vide de sens si elle n’est pas assortie de
tout un ensemble complexe d’autres expériences (des regards, des signes
empathie . . .

Bref, sans les savoirs, pas de transmission différée (car il serait im-
possible de savoir quoi transmettre puisque il serait impossible de le dé-
signer) ; il serait tout aussi impossible de désigner, de représenter nos
expériences(singulières ou collectives) : les représenter pour les évoquer,
les partager et donc les transmettre. Ce que je veux dire, c’est que les
savoirs ne sont qu’une des conditions préalables de la transmission mais
ne peuvent pas constituer pas l’objetde la transmission : car ce qui est
visé par la transmission, par l’enseignement, c’est la re-production de
l’expérience que permet de désigner ce savoir. Pour l’élève il ne s’agit de
refaire encore (sur le modèle du professeur) mais bien de faire de nou-
veau. Par exemple, lorsqu’un professeur enseigne à ses élèves la manière
de dériver des fonctions, il n’attend pas seulement qu’ils sachent calculer
la dérivée d’une fonction particulière (ce n’est ici que la partie visible de
l’enseignement et de l’apprentissage : le savoir), il attend surtout que ses
élèves utilisent la dérivée pour traiter et résoudre des problèmes nouveaux
c’est-à-dire des problèmes qu’ils n’ont jamais rencontrés : par exemple,
pour un périmètre donné d’un rectangle, quelles doivent être les mesures
de la longueur et la largueur pour obtenir la surface maximale ?

On voit bien à travers cet exemple l’intérêt de la distinction fondamen-
tale qui est faite dans la théorie des situations entre « connaissances » et
« savoirs ». Le professeur cherche à s’assurer à travers ce problème d’op-
timisation non seulement que l’élève sait sa leçon mais qu’il la comprise :
que désormais il possède une bonne connaissance de la dérivation.

C’est entre savoir et connaissance dans cet espace articulant la culture,
l’institution, la société (autrement dit tout ce qui est externe au sujet et
auquel le sujet doit s’assujettir) et la singularité de nos expériences, de
nos connaissances que je situerai le lieu de la transgression.
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Explicitons un peu cette idée. Elle peut être formulée simplement : les
mathématiques achevées c’est-à-dire telles celles que nous connaissons (les
savoirs, les démonstrations, les algorithmes . . . ) sont des mathématiques
mortes ; une grande partie du travail des professeurs consiste à créer les
conditions de leur « résurrection » pour les élèves. C’est ici que l’essentiel
va se jouer ! Pour ce faire, les professeurs n’ont pas d’autres choix que
celui de créer des situations qui permettront à leurs élèves de rencontrer
ce qu’ils ignorent et que pourtant ils doivent apprendre. Les professeurs
espèrent que ces situations permettront aux élèves d’éprouver l’intérêt
des connaissancesque le professeur cherche à leur communiquer : leurs
usages, leurs fonctions, l’économie qu’elles rendent possible . . .

Mais les professeurs ne peuvent pas se substituer à leurs élèves pour
les leur apprendre (tout comme on ne peut marcher, parler, dormir, ai-
mer . . . ou souffrir à la place d’autrui, même si bien sûr, on met tout en
œuvre pour l’aider ou le soulager dans ses apprentissage : c’est cette im-
possibilité qui constitue le noyau dur du contrat didactique (Brousseau,
1998 ; Sarrazy, 1995).

3. Le ontrat didatique : de quoi s'agit-il ?

Toute relation d’enseignement peut être décrite sous la forme d’un
contrat : je t’enseigne c’est-à-dire je te montre ou je te dis . . . ce que
tu dois apprendre et comment tu dois le faire et toi tu apprends c’est-à-
dire tu reproduis ce que je t’ai dit ou montré. Il va de soi que ce contrat
est implicite et n’a jamais été explicitement passé entre le professeur et
ses élèves mais les uns comme les autres agissent comme s’il avait été
conclu(de la même façon que lorsque nous parlons, nous faisons comme
si les mots avaient le même sens . . . pourtant rien n’est moins sûr.)

Mais ce contrat n’est pas tenable au moins pour deux raisons :

1. La première est que le professeur ne peut pas montrer ou dire à
l’élève ce qu’il doit apprendrepuisque précisément l’élève ignore ce
que le professeur cherche à lui enseigner ; s’il le lui montre alors
l’élève est incapable de le voir et s’il le voit alors il est inutile de le lui
montrer et donc de l’enseigner. Tel est un des premiers paradoxes
que contrat : si l’élève comprend son professeur alors l’élève sait
déjà mais alors il n’a pas besoin d’apprendre ; s’il ignore ce que le
professeur cherche à lui enseigner alors il ne peut pas comprendre
ce que son professeur lui dit !

2. La seconde raison tient à la nature même de ce que l’élève doit
apprendre ; je l’ai déjà présentéeà propos de l’exemple de la déri-
vation des fonctions : ce n’est pas un savoir que l’élève doit ap-
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prendre mais une connaissance, un usage, une manière de traiter
un problème, une manière de faire des mathématiques . . . C’est
cette même idée qu’exprimait Thurston à propos des demandes que
lui faisaient les mathématiciens qui venaient le trouver pour obtenir
quelques éclaircissements sur tel ou tel aspect d’une démonstration
qu’il avait établie :« Ce que les mathématiciens avaient besoin, et
ce qu’ils me demandaient, c’était d’apprendre mes façons de penser,
et non comment je démontrais la conjecture dans le cas des variétés
de Haken ».

J’illustrerai cette impossibilité du professeur à montrer ce qu’il veut
par l’exemple que donne Wittgenstein (1961, XI, 325) de la double croix :

Figure 2.

Cette figure peut être vue comme une croix banche sur fond noir et
comme une croix noire sur fond blanc) et pourtant la figure n’a changé :
c’est ce « voir-ceci-comme-cela » que Wittgenstein appelle la naissance
d’un aspect (la dérivée et son usage) (1985, §431). Cette impression vi-
suelle peut être ‘forcée’ par l’imagination (par exemple, voir un animal
dans un nuage), par la volonté (comme dans le cas de la double croix), par
le savoir (voir un triangle en considérant un segment particulier comme
étant sa base, puis en considérant un autre segment) . . . mais dans tous
les cas, elle ne peut être montrée puisque le perçu étant resté invariable
(id., §440). C’est précisément sur ce point que Wittgenstein fait appa-
raître une confusion liée à l’amalgame de ces deux usages : décrire la
vision de l’aspect (tantôt une croix noire, tantôt une croix blanche) dans
les mêmes termes que la vision d’un état (« Je vois un chat »).

Tel est un des arguments des plus convaincants pour montrer que
toute relation d’enseignement est fondamentalement déterminée à la fois
par ce désir de tout dire du professeur et en même temps par cette im-
possibilité d’expliciter le sens (c’est-à-dire l’usage) : le contrat ne peut
donc être tenu que s’il est rompu, violé, bref transgressé . . . car il exige
de l’élève une création singulière correspondant à un usage nouveau mais
conforme aux règles des mathématiciens.

Mais vous pourriez m’opposer la contradiction suivante : comment
est-il possible à la fois de dire que l’élève réalise une création, qu’il agit
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conformément à la règle, tout en convoquant l’idée de transgression. Vous
auriez raison à condition toutefois que je considère que l’action de l’élève
est déterminée par la règle, que l’élève agit en fonction de la règle : or,
il n’en est rien ! Car l’idée selon laquelle l’élève interprèterait la règle
pour agir n’est pas correcte ; elle contient un paradoxe que Wittgenstein
formule ainsi :

« Aucune manière d’agir ne pourrait être déterminée par une
règle, puisque chaque manière d’agir pourrait toujours se conformer
à la règle » (1961, §201).Comment alors une règle peut-elle nous
guider « puisque nous pouvons interpréter son expression de telle
et telle autre façon ? » (1983, 282). S’il est possible de la suivre
comme on veut, il est alors impossible de la suivre puisqu’elle ne
nous contraint pas !

Tel est d’ailleurs le drame de ces élèves qui ‘savent leur leçon mais
qui ne comprennent pas’. Doit-on déplacer le problème en lui enseignant
des méta-règles comme le suggèrent régulièrement certains auteurs ? Pas
plus car non seulement l’élève ne fera plus de mathématiques mais on
retrouverait à un méta-niveau les mêmes difficultés que l’enseignement
des méta-règles était pourtant censé réduire !

Le paradoxe n’est qu’apparent et permet de dévoiler la faiblesse d’une
conception mentaliste des rapports entre règle et action. Comme l’ex-
plique Bouveresse, ce paradoxe provient de la tendance que nous avons
« à instaurer artificiellement entre la règle et ses applications une dis-
tance problématique qui, en réalité, n’existe pas » et qu’un hypothétique
mécanisme mental permettrait de réduire (Bouveresse, 1986) car la règle
ne contient pas en elle-même ses conditions d’application car « c’est pré-
cisément parce [qu’elle] doit pouvoir me servir à chaque instant de norme
pour juger ma performance qu’elle ne peut pas me faire faire ce que je
fais de la manière dont le ferait un mécanisme quelconque » (Bouveresse,
1986, 30).

Il est donc fondamental de ne pas amalgamer : « Suivre une règle » et
« obéir à la règle ». « Suivre une régle » est une « création normative »
selon l’expression de Hacker et Backer permettant d’estimer la conformité
de l’action à ce que dit la règle 4. Sa signification correspond à l’usage
circonstancié que le sujet en fait hic et nunc.

4. C’est en cela qu’apprendre à suivre une règle est analogue à l’apprentissage
d’un langage dans lequel « la grammaire nous autorise à faire certaines choses avec le
langage et non certaines autres ; elle détermine le degré de liberté [. . . ] les règles sont
fixées et données : elles autorisent certaines combinaisons et en interdisent d’autres. »
(Wittgenstein, 1988, 8 ; 94).



[76℄ Bernard Sarrazy

« Une ligne ne me contraint-elle pas à la suivre ? – Non, mais
quand je me suis décidé à l’utiliser ainsi comme modèle, elle me
contraint. Non, c’est moi qui me contrains à l’utiliser ainsi. » (Witt-
genstein, 1983, 329).

C’est dans cette décision que se situe la dimension créative (car non
contenue dans la règle, dans la norme, dans la loi . . . ) et donc transgres-
sive !

L’apprentissage se manifestera lorsque l’élève se montera capable non
de reproduire ce qu’on lui a dit ou montré, mais bien lorsqu’il produira
de lui-même une conduite nouvelle (« nouvelle » car se manifestant dans
une situation nouvelle) mais conforme à ce qui lui aura été enseigné. C’est
en cela que si la transgression brave, déborde, viole, dépasse, franchit . . .
les normes, les règles, les interdits, elle ne les détruit pas. Au pire, la
transgression peut conduire à les interroger, à révéler leur obsolescence,
leur caractère arbitraire. J’y reviendrai.

L’élève ne peut apprendre que s’il accepte de ne plus être enseigné
en s’engageant de lui-même dans une activité par laquelle il pourra ap-
prendre ce que le professeur ne peut effectivement lui montrer (un usage
et donc un sens). Mais cette rupture ne peut se réaliser que sous certaines
conditions ; ainsi, dans cette perspective, « enseigner » consistera à créer
les conditions du surgissement de cette re-production par l’élève, non au
sens de la copie, de la répétition de ce que le professeur a dit ou montré,
mais bien au sens d’une production nouvelle dans une situation nouvelle.
Cet espace de création a donc un prix pour le professeur : celui d’un
possible surgissement de ce que J.Giroux (2008) appelle les « conduites
atypiques » 5. Tel est selon moi un des arguments principaux à l’encontre
d’une lecture behavioriste de la théorie des situations didactiques.

Donnons un exemple de ce type de situationqui permet de restaurer
une véritable activité mathématique : chercher, conjecturer, confronter
les convictions, convaincre, prouver . . . bref faire l’expérience de faire
des mathématiques – un faire faire dirait Conne (1999).

Un exemple extrait de GuyBrousseau (1998)
Situation d’étude des applications linéaires : l’agrandissement du pu-

zzle.

5. Elles ontcomme caractéristiques : « 1. Caractère marginal ; 2. Non adaptée aux
contraintes ; 3. Spécifique à l’enjeu de la situation mathématique », c’est d’ailleurs en
cela qu’on peut les considérer comme relevant du domaine didactique. Elles ne sont
pas assimilables à une « conduite inefficace ou déviante » ou « inadaptée au problème
proposé », et comme le précise, J.Giroux, elles « témoignent du rôle de la dimension
antagoniste du milieu [de la situation] » et « sont donc corollaires de l’appropriation
d’un véritable enjeu de la situation. »
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Consigne
« Voici des puzzles. Vous allez en fa-
briquer de semblables, plus grands que
les modèles, en respectant la règle sui-
vante : le segment qui mesure 4 cen-
timètres sur le modèle devra mesurer
7 centimètres sur votre reproduction.
Je donne un puzzle par équipe de 5 ou
6, mais chaque élève fait au moins une
pièce. Lorsque vous aurez fini, vous de-
vez pouvoir reconstituer les mêmes fi-
gures qu’avec le modèle ».

Déroulement
« Après une brève concertation par
équipes, les élèves se séparent. Le
maître a affiché au tableau une repré-
sentation agrandie des puzzles com-
plets. Presque tous les enfants pensent
qu’il faut ajouter 3 centimètres à
toutes les dimensions. Le résultat évi-
demment, c’est que les morceaux ne se
raccordent pas. »

Dans cette situation, on voit clairement comment les élèves peuvent
apprendre par interaction avec la situation ; elle permet (entre autres
choses) d’invalider le modèle prégnant de l’addition : si 4 → 7 (4 + 3)
alors 5→ 8 (5+3). Si on s’était limité à fournir un puzzle à chaque élève
pour illustrer l’usage de la proportionnalité, les élèves auraient-ils appris
les mêmes mathématiques ? Certainement ! Les élèves auraient appris les
mêmes fonctions mais avec la première situation, ils apprennent aussi
quelque chose de plus : une manière de faire des mathématiques. Autre-
ment dit, ce qui diffère entre ces deux situations ce n’est pas le savoir
mathématique mais bien la nature même de l’expérience mathématique
qu’ils auront ici vécue. La première permet de conserver la nature même
de l’expérience mathématique (recherche, conjecture . . . ), la seconde (ba-
sée sur l’ostension) montre le même savoir, mais ne permet pas à l’élève
de faire l’expérience de cette manière de faire des mathématiques. On voit
bien aussi à travers cet exemple non seulement le caractère indicible du
contrat, mais aussi l’intérêt de rompre avec l’opposition classique entre les
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pédagogies dites « actives » et « classiques » qui constitue, me semble-t-il,
l’une des impasses contemporaines des plus tenaces et contre-productives,
car la connaissance des algorithmes ne détermine pas plus la connaissance
de l’arithmétique que celle des règles du jeu d’échec ne détermine le « sa-
voir joueraux échecs ». L’idée est simple mais pas triviale.

4. Transgression et sensibilité au ontrat

La sensibilité au contrat est un concept que nous avons introduit pour
désigner les décisions des élèves à l’égard des implicats mobilisés au sein
du contrat didactique 6.

Donnons un premier exemple :
La scène se déroule dans une classe de cm1. Quelques jours

avant cet épisode, le professeur avait enseigné un algorithme per-
mettant de calculer rapidement la différence entre deux nombres :

328
+3

−−−−−→ 331
+50
−−−−−→ 381

− 47 −−−−→ − 50 −−−−−→ −100

281
+3

281
+50

281

Dans la première partie du contrôle semestriel, elle avait inclus
l’exercice suivant :

Quel serait ton cheminement pour effectuer ces calculs ?

a) 875− 379 =
b) 964− 853 =
c) 999− 111 =

Sur, 19 élèves 16 appliquent la règle enseignée pour le 3me exercice :

999− 111 = 1008− 120 = 1088− 200 = 888

L’effet capitaine n’est rien d’autre qu’un simple et habituel effet de
contrat de la même nature que celui-ci et certainement beaucoup plus
spectaculaire. Dans ce type de situation, le professeur ne peut pas dire

6. Rappelons que le contrat didactique est défini par G. Brousseau comme étant
« l’ensemble des comportements (spécifiques [des connaissances enseignées]) du maître
qui sont attendus de l’élève et l’ensemble des comportements de l’élève qui sont atten-
dus du maître. » (1980, 127). On peut aussi se reporter à la note de synthèse parue
sur ce concept (Sarrazy, 1995) dans laquelle nous faisons apparaître les raisons de sa
genèse, de son évolution dans le champ męme de la didactique et les usages qui en
sont faits dans diverses communautés scientifiques.
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ce qu’il attend des élèves (comme pour tout autre problème du reste),
et on imagine que ceux-ci peuvent s’interroger sur la teneur de ses at-
tentes : doivent-ils manifester, comme ils le font habituellement, leurs
compétences en arithmétique en résolvant un problème dont tout porte à
penser qu’il relève de l’addition, et ignorer (ou feindre d’ignorer) l’aspect
quelque peu cocasse de la question ? Ou bien doivent-ils se prononcer sur
la pertinence de la question en regard des informations contenues dans
l’énoncé ?

Selon la « réponse » qu’ils donneront à ces « interrogations », soit
ils répondront, comme le fait la majorité des élèves, « 36 ans », soit ils
rejetteront la validité de ce problème en déclarant qu’ils ne peuvent y
apporter une réponse raisonnable. C’est précisément ce positionnement
à l’égard de cet implicat, que nous désignons « sensibilité au contrat
didactique ».

Pour finir de préciser le sens de ce concept, examinons les deux extraits
d’entretiens suivants :

Lou (10 ans), excellents résultats scolaires :
une logique de la transgression
– A ton avis, comment le professeur voit-il qu’un élève a compris

une leçon ?
– (Lou) : il le voit en posant des questions qui sont un peu à côté

de ce qu‘il avait dit ; si l’enfant répond comme il faut, c’est qu’il
a bien compris. Mais dans les évaluations, il faut répondre qu’un
petit détail ; il y a des enfants qui répondent tout parce qu’ils ont
appris bêtement sans rien comprendre ; ils ne sont pas capables
de répondre qu’un détail. Si on met exactement le détail qu’elle
voulait alors la maîtresse voit qu’on a bien compris.

Par contraste avec celui de Jean, on mesure combien les élèves ne
sont pas tous également préparés à identifier et à décoder ces attentes
implicites :

Jean (10 ans) : une logique de la répétition
faible en mathématique (bon en langue)
Le professeur voit qu’on a compris quand on écrit beaucoup et
quand on écrit vite. Quand il donne des devoirs à la maison certains
élèves se font aider par leurs parents alors à l’école il nous met
tout seul. Comme ça, il est sûr qu’on ne copie pas et elle voit si
on a compris. A la maison j’apprends des choses qu’il nous a dit,
mais j’ai remarqué qu’il ne nous demande pas vraiment ce qu’elle
nous a appris alors moi je n’apprends pas vraiment ce qu‘il nous
a donnécar il change des choses.

Raisons didactiques pour l’une, qui, manifestement, a compris que
l’apprentissage n’était pas répétition et que sa maîtresse était forcément
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tenue au silence pour des raisons profondément didactiques (« Elle a
besoin de voir » dit-elle) ; raisons instrumentales pour l’autre, qui, tout
en comprenant aussi la nécessité qu’a la maîtresse de regarder « comment
on est », ne comprend pas vraiment pourquoi « elle ne refait pas vraiment
ce qu’elle [nous] a appris » et qui, en toute logique, « n’apprend pas
vraiment ce qu’elle a donné ».

Ces deux exemples suffisent à bien montrer comment s’établit un com-
merce inégal des implicites dans les rapports entre professeur et élèves,
et en quoi l’absence d’analyses de ses conditions de production, contri-
bue à entretenir l’idéologie charismatique à propos des succès et insuccès
scolaires (et probablement de façon plus marquée en mathématiques).
C’est à l’analyse des conditions de production des sensibilités au contrat
didactique que nous nous attacherons maintenant.

4.1. L'effet des styles pédagogiques sur les phénomènes de sensibilité au

ontrat ?

L’analyse des phénomènes de sensibilité au contrat est complexe ;
elle se situe au croisement des deux principaux univers de pratiques des
élèves : l’école et la famille. Nous n’aborderons ici que l’analyse du champ
scolaire 7.

Pour comprendre les raisons de l’inégale dispersion de la sensibilité
selon les classes, le modèle d’analyse devait permettre d’estimer la marge
de manœuvre qui, dans l’organisation et la gestion des situations, est
dévolue (volontairement ou non) aux élèves.

Résultats et commentaires
Nous nous limiterons ici à la présentation des deux styles les plus

contrastés :

1. Le style « actif » correspond à ce qu’on pourrait appeler en pre-
mière approximation une ‘pédagogie active’. Il se caractérise par
une forte variabilité dans l’organisation et la gestion des situations :
ces maîtres pratiquent régulièrement le travail par groupes sans
se limiter forcément à cette forme de groupement des élèves ; les
problèmes ‘amorces’ sont généralement complexes ; leur classe est
fortement interactive (les élèves interviennent spontanément, les ré-
ponses ‘chorales’ ne sont pas rares . . . ) ; l’institutionnalisation est
différée dans la leçon. Telles sont les traits principaux de ce premier
style.

7. Le lecteur pourra trouver dans Sarrazy (2002) l’étude relative à l’impact des
pratiques d’éducation familiale sur les phénomčnes de sensibilité au contrat didactique.
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2. Le style « académique » se caractérise par une faible ouverture
et une faible variété des situations ; on pourrait l’appeler ‘ensei-
gnement classique’ ou ‘frontal’ dont le schéma de base pourrait se
résumer par le triptyque « montrer-retenir-appliquer ». Ces maîtres
institutionnalisent un modèle de résolution très rapidement puis
soumettent à leurs élèves des exercices de complexité croissante ;
ils sont d’abord corrigés localement (le maître passe dans les rangs
et corrige au ‘couppar coup’) puis collectivement, au tableau, où il
enseigne en commentant la solution, s’aidant parfois, selon le temps
dont il dispose, de la participation de certains élèves sur le mode
« question-réponse ». L’espace interactif est quantitativement et
qualitativement fort différent de celui du style précédent : on n’ob-
serve quasiment jamais d’interventions spontanées ou de réponses
‘chorales’ des élèves. Bref ce sont des maîtres très formalistes qui
cherchent à maîtriser le plus de paramètres possible de leur classe.

Dans des contextes ‘actifs’, 48% des élèves s’autorisent à produire
une réponse sans calculer (au problème escargot) contre seulement 17%
dans le contexte ‘académique’ [χ2 = 6.08 ; p. < .04]– bien entendu, ces
différences se maintiennent à même niveau scolaire et quel que soit le
type de situation de production de ces réponses 8. Ces styles s’avèrent
donc pertinents pour expliquer les phénomènes de sensibilité au contrat
comme le montre le graphique ci-dessous :

Figure 3. Sensibilité au contrat selon le style d’enseignement
pour chacun des niveaux scolaires en mathématiques.

8. Notons aussi que les męmes résultats ont été enregistrés avec les autres types
de problèmes : problèmes type ‘capitaine’, lacunaires, etc.
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Les différences entre les cultures didactiques, descriptibles par les
formes d’organisation et de gestion des situations, permettent d’expli-
quer l’inégale distribution des sensibilités des élèves. Plus les élèves ont
la possibilité de confronter les règles enseignées à des situations faiblement
ritualisées, comme c’est le cas dans les contextes actifs, plus ils ‘s’auto-
risent’ à les engager dans des situations nouvelles. Réciproquement, plus
l’incertitude attachée aux situations est réduite, comme c’est le cas dans
les contextes académiques, plus les élèves semblent établir un rapport ‘ri-
gide’ entre une règle et son usage et ne ‘s’autorisent’ pas, ou très peu, des
écarts non conventionnels.

5. Effiaité et équité : as de l'arithmétique

Peut-on dire qu’un style serait préférable à un autre, arguant que le
style « actif » permettrait aux élèves de « mettre plus de ‘sens’ sur les
savoirs scolaires » pour reprendre ici le credo pédagogique actuel ? Ce
serait une erreur.

Si nous proposons à ces mêmes élèves des problèmes de difficulté non
triviale dans des situations faiblement décontextualisées par rapport au
contexte d’acquisition, alors les résultats précédents s’inversent.

Conditions de l'expériene

Les problèmes retenus correspondent à la 4ème structure additive de
la typologie élaborée par Vergnaud (1983). Cette structure présente la
particularité de ne mettre en jeu que des transformations positives ou né-
gatives (‘gagner’ ou ‘perdre’) sans qu’aucune indication ne soit fournie sur
l’état numérique initial (d’où son appellation : « TTT », « transformation-
transformation-transformation »). Exemple :

Lou joue deux parties de billes. Elle joue une partie. A la se-
conde partie, elle perd 4billes. Après les deux parties, elle a gagné
6 billes. Que s’est-il passé à la 1ère partie ?

Le plan expérimental est classique : 22 problèmes de difficulté variable
ont été soumis aux élèves lors d’un pré-test. Il fut suivi de 2 leçons, espa-
cées entre elles d’une semaine, à l’issue desquelles les mêmes problèmes
ont de nouveau été soumis aux élèves.
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Figure 4.

Afin de ne pas influencer les scénarii des leçons, les professeurs n’ont
eu accès au protocole d’évaluation qu’au moment du post-test. Un ‘indice
de progression’ (Ip), qui bien sûr ne se réduit pas au simple calcul de la
différence des scores du pré-test et du post-test, a été défini pour chacun
des élèves 9.

5.1. Résultats et ommentaires

Deux aspects ont été pris en compte pour évaluer les effets de ces
enseignements :

1. Le premier, appelé efficacité, correspond à la mesure des perfor-
mances effectives enregistrées au post-test en contrôlant les va-
riables susceptibles d’infléchir les résultats observés (ici le niveau
scolaire des élèves).

2. Le second, appelé l’équité, mesure l’efficacité différentielle pour un
groupe d’élèves donné, en tenant compte, cette fois, de leur niveau
initial (en l’occurrence, les résultats obtenus au pré-test).

Les deux graphiques ci-après résument les principaux résultats.
Le style ‘académique’ s’avère non seulement plus équitable(les élèves

progressent significativement plus que les élèves ‘actifs’ – F1 = 3, 73 ;
p. < .05), mais aussi plus efficace : leurs performances sont significative-
ment supérieures (F1 = 5, 10 ; p. < .01). Ces effets sont particulièrement
manifestes pour les élèves faibles (Efficacité : F = 20, 26 ; p. < .01 –
Equité : F = 8, 65 ; p < .01).

Ces derniers résultats devraient-ils nous inciter à renverser notre pré-
cédente conclusion et affirmer, cette fois, qu’une ‘pédagogie classique’ est
préférable à une ‘pédagogie active’ ? Conclure que celles-ci sont élitaires ?

9. Le modèle d’estimation des progrès utilisé ici est d’une construction complexe ;
la procédure utilisée (construction d’un modèle théorique) d’une part permet d’éviter
les effets classiques de plafond ou de plancher et, d’autre part, autorise à affirmer que
l’élève a progressé (régressé) au seuil de risque de 10%.
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Figure 5. Mesure de l’efficacité des 2 styles d’enseignement
selon le niveau en mathématiques des élèves.

Figure 6. Mesure de l’équité des 2 styles d’enseignement
selon le niveau en mathématiques des élèves.

Ce serait très largement imprudent. Car, d’une part, toute recherche
n’est qu’un instantané, une fenêtre ouverte sur un univers de pratiques
dont les temporalités ne sont pas analogues (cf. la thèse de Chopin, 2007).
Rien ici, ne permet d’affirmer que sur un nombre plus important de leçons
– qui, je le rappelle, ont été limitées, en accord avec les professeurs, à deux
– les performances auraient été les mêmes. Le tempo de l’apprentissage
est probablement plus lent dans un style actif (mais aussi le temps alloué
pour l’enseignement a des effets très significatifs sur la structuration et la
gestion des dispositifs didactiques, Chopin, id., 2007). Enfin, les résultats
précédemment obtenus à propos de la sensibilité ne peuvent pas être
ignorés.
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6. Conlusion

L’ensemble de ces résultats appelle la question fondamentale de la
visée de l’enseignement. Une ‘tête bien pleine’ ou une ‘tête bien faite’ ?
Un ‘bon’ enseignement doit-il viser une bonne maîtrise des algorithmes
ou bien permettre aux élèves de les utiliser dans des situations nouvelles ?
Cette question n’est pas seulement scientifique, elle est aussi foncièrement
et noblement politique car elle pose inévitablement celle de savoir quel
type d’hommes et de femmes l’Ecole doit former. Or manifestement, si
les deux visées précédemment énoncées paraissent nécessaires ensemble,
elles apparaissent, de fait, peu compatibles par les rapports paradoxaux
qu’elles entretiennent. C’est là le « paradoxe de la sensibilité », que j’avais
énoncé en 1996 : « Plus le maître cherche à enseigner clairement l’usage
d’une règle, plus il réduit la possibilité d’un usage singulier, mais idoine et
qu’il exigera pourtant ultérieurement. ». On comprend mieux maintenant
comment peut se tisser le drame didactique qui se joue pour les élèves
les plus faibles : aveuglés par l’algorithme et par la certitude assurée par
leur maître quant à son efficacité pour traiter une infinité de situations,
ils ne s’autorisent pas à envisager d’autres usages que ceux qu’ils ont
initialement rencontrés et, comme le disciple à qui son maître montre la
lune, ils regardent son doigt.

Pour finir, et pour résumé on dira qu’apprendre des mathématiques
ce n’est pas seulement mémoriser des mathématiques mais re-créer leurs
usages ; et créer c’est s’autoriser à découvrir ce qui n’est pas, c’est aller
au-delà (trans . . . gresser, trans . . . cender). Cette autorisation met en
tension dialectique obéissance et transgression car on ne saurait imaginer
une possibilité de création sans transgression mais en même temps il ne
saurait y avoir de transgression sans loi, ni normes mais aussi sans la libre
acceptation des contraintes qui définissent l’espace de sa création (cela
est très vrai en mathématique). On l’a vu ces espaces de liberté n’existent
que parce qu’il y a eu transmission et les conditions de la transmission (la
manière d’enseigner) déterminent les possibilités de transgression : telle
est notre responsabilité d’éducateur !

Finissons sur un vœu : nos élèves devront réinventer le monde de
demain, ils devront aller au-delà de ce que nous leur avons transmis . . .
notre travail, nous éducateurs, est de leur permettre de vivre à l’école
cette expérience de la transgression, de la démesure. Comment espérer
sinon qu’ils le fassent, si on ne leur a jamais donné l’occasion de la vivre.
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on mathematial knowledge toward possibilities

of mathematial ations

Abstrat. Most work in mathematics education (research and teach-
ing) focuses on students’ learning of mathematics. The (tacit) ori-
entation taken is to look at that learning and create a conjecture
about what students know or do not know, and then try to find
ways to help students develop, or better understand, this mathe-
matical knowledge. In this paper, I suggest that there are two major
difficulties with this attitude for mathematics education. The first
concerns the fact that mathematical knowledge is seen as a thing,
something that someone can grab, as if it existed independently by
itself. This view on mathematical knowledge leads to a second dif-
ficulty, which is that it offers a “deficit” view of learning influenced
by a medical paradigm. Considering mathematical knowledge as
an external thing “to know about,” unfortunately, leads to compar-
ing students’ mathematics with an allegedly external mathematics.
With this orientation, students are always seen as lacking some-
thing, as needing more. They are always seen in deficit. I argue that
this view is problematic for conceptualizing mathematical activity,
and even ethically, and that a change is needed toward looking at
what is made possible by students’ actions and where it can lead,
rather than focusing on something that is supposedly missing. This
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advocacy requires transformations of our current paradigms, and
I present the theoretical groundings from various perspectives to
support this view, as well as discussing the methodological shifts
that this imposes for analyzing students’ mathematics.

1. Context � prelude

I knew very well how to teach fractions before starting my studies.
[. . . ] Now, I do not know anymore how to teach them and this is
where the result of didactique of mathematics lies. I am not, in that
sense, required to find the most adapted solution to my classroom
from the many different possible options. Now that I know these
possibilities, I feel obligated to change my conceptions within the
student–teacher interaction, I have doubts, I see students’ difficul-
ties that I had never thought of before. It is the embarrassment of
richness that is now the reason for my worries, for my doubts.
, (Krygowska, 1973; cited in Bednarz, 2000, p. 77, my translation)

I begin with this quote from the Polish didactician Krygowska in
order to offer a context for this paper, specifically to offer a context
of non-simplicity in relation to what are the outcomes of research in
mathematics education and all the discourse about finding the “best ways”
to teach or make students learn mathematics. Krygowska’s words stress
that research in mathematics education is not geared to finding optimal
solutions, but to generating new ideas and understanding phenomena in
depth; which clearly cannot lead to easy, one-size-fits-all predetermined
practical solutions to solve predetermined problems; the famous “what
works,” a view that has been amply criticized in mathematics education
(see Bednarz, 2000; Zaslavsky, Chapman & Leikin, 2003) and in education
(see Biesta, 2007, 2010).

In this paper, I address ideas and issues that many others have ad-
dressed, explicitly or implicitly, through the papers in these proceedings
and elsewhere. Thus I do not pretend to reinvent the wheel, but attempt
to push it forward. The ideas and issues that I address here are a work in
progress, part of an ambitious research program undertaken by my col-
league Jean-François Maheux and myself and the students in our research
lab 1, which aims at better defining the issues related to mathematical ac-
tivity at an epistemological level.

Before engaging in these issues, other notes are in order to situate my
work as researcher and better contextualize the ideas that I present here.

1. See http://www.epistemo.math.uqam.ca
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As a researcher, I work in mental mathematics where I study solvers’
various strategies and ways of solving various problems. I am thus deeply
interested in mathematical strategies and activity and not in issues of
knowledge of any sort. As well, my view of mathematics as a field of study
is, along with what Jeppe Skott presented in the conference, aligned to
Lampert’s (1990) critique of how mathematics is portrayed in schools:

Commonly, mathematics is associated with certainty: knowing it,
with being able to get the right answer, quickly. These cultural as-
sumptions are shaped by school experience, in which doing math-
ematics means following the rules laid down by the teacher; know-
ing mathematics means remembering and applying the correct rule
when the teacher asks a question; and mathematical truth is de-
termined when the answer is ratified by the teacher. Beliefs about
how to do mathematics and what it means to know it in school are
acquired through years of watching, listening, and practicing.
. (p. 32, emphasis in the original)

I also do not comply with this view of mathematics and prefer that
proposed by Papert (n.d.):

I like to say there is a big distinction between something that I
love and I call mathematics and something called “math”, which is
what we teach in schools and that’s not a mathematics curriculum
it’s a “math” curriculum. [. . . ] Mathematics is an active intellec-
tual activity, and it means working at things where you’re using
the mathematical ideas that you are struggling with for a larger
purpose. And, the idea that the larger purpose could be discover-
ing something that the teacher decided you got to discover is not
a larger purpose.

This gives an important context to my work, and particularly the con-
text of the ideas and issues I address here. I present these in the following
pages, obviously constrained by the space allowed in these proceedings.

2. Mathematial knowledge and researh

Most work in mathematics education research focuses on students’
learning of mathematics. The usual (tacit) orientation adopted is to look
at that learning and create a conjecture on what the students know or do
not know, and then attempt to find ways of helping students to develop
or better understand this mathematical knowledge.

I suggest that there are two main issues with this orientation for math-
ematics education research. Also, it is important to keep this in mind:
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I raise these issues because they carry great potential to stimulate deep
reflections, to trigger deep questions in our community of mathematics
education researchers, and not because it represents a “wrong” path or
point of view for mathematics education research.

2.1. Knowledge as a thing

The first issue worth reflecting on is that through this view, mathe-
matical knowledge is conceived of as a thing, a commodity that someone
can possess. Mathematical knowledge is seen as something that exists
independently of the knowers themselves, as an external object that one
must grasp. This creates a well-known problematic distance between stu-
dents and mathematics, where teachers attempt to teach that external
mathematics to students as best they can, and students try to learn that
external mathematics. It participates in the alienation of knowers from
mathematics itself, creating a notable distance between the two.

In our research lab, we are acutely uncomfortable with this situation,
with this idea of mathematical knowledge seen as a thing that someone
can possess. Some blunt questions are in order: Has anyone ever seen
mathematical knowledge? If so, where? As Jeppe Skott in his presentation
hinted, it is maybe not in people’s heads, something that Kieren, Calvert,
Reid and Simmt (1995) formulate this way: “Knowledge is not in the book
or in the library; Knowledge is not in our heads; Knowledge is in the inter-
action” (p. 1).

We believe that what one sees when there is an assertion of “seeing”
mathematical knowledge are mainly manifestations, enactments of, some-
thing that is done. As Bernard Sarrazy mentioned in his talk: “If I want
to check if you know how to subtract, I ask you to do subtraction.” This
resonates well with Maturana’s (1988) claim:

Thus, if someone claims to know algebra – that is, to be an alge-
braist – we demand of him or her to perform in the domain of what
we consider algebra to be, and if according to us she or he performs
adequately in that domain, we accept the claim (pp. 4-5).

These manifestations, these enactments are something that, as ob-
servers, we assign as mathematical knowledge. But this reification pro-
cess of these actions into knowledge, into things, need not be. In our
research lab, we prefer to let go of this unneeded need to reify math-
ematical enactments into mathematical knowledge. My colleague and I
focus rather on those actions that we observe as mathematical, what we
have called in French faire mathématique (Maheux & Proulx, 2014a) or
in English doing|mathematics (Maheux & Proulx, 2015). I return to these
ideas below.
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2.2. Defiit view

The second issue worth reflecting on is about the fact that this view
of mathematical knowledge leads to what is often referred to as a deficit
view of learning, influenced by a medical paradigm (see Bélanger, 1990-
91). Considering mathematical knowledge as an external thing “to know
about” unfortunately leads to comparing students’ mathematics with this
allegedly external mathematics. With this orientation, in these compar-
isons, students are always seen as lacking something, as needing more than
this allegedly perfect knowledge base external to knowers. In a word, they
are seen in deficit.

A number of sub-issues then emerge from these considerations. One,
as mentioned above, is that it presents the idea that there is indeed
some kind of mathematical thing to grasp, some predigested mathemat-
ical knowledge ready made to solve already predetermined problems. It
reinforces a view of knowledge as static and predetermined. This leads
also to an ethical concern, where students’ mathematical creativity is con-
strained, because what students do/understand/produce is always seen
through the lens of this comparison with this allegedly external math-
ematical knowledge base and thus is always a subset thereof. Students
invariably then produce mathematics that is within mathematics that
we already know and thus can never be mathematically creative. Bo-
rasi (1987) makes the bold assertion that this situation, where students’
mathematical creativity is tamed, is representative of our own lack of
creativity as researchers:

It is interesting to note that an interpretation of errors solely as
tools for diagnosis and remediation would have only partially ex-
ploited the educational potential of the error discussed. [. . . ] In ad-
dition, the creativity of the researchers themselves when analyzing
the error would be constrained by their limited focus on finding the
causes of the students’ error so that they could eliminate it. Thus
they see the error necessarily as a deviation from an established
body of knowledge, and do not even allow themselves to consider
it as a possible challenge to the standard results (p. 4).

However, most important we believe, is that as researchers we see
a problem with this. We see as problematic the fact that students lack
knowledge, even if it is we who are creating this lack because we are those
making this comparison, which evidently results in saying that students’
lack knowledge. By making comparisons between students’ mathematics
and this allegedly external and perfect knowledge base, we are the ones
creating this deficit between students’ mathematics and this mathemati-
cal knowledge base. And, acting out of surprise, we scream in fear facing
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the situation; whereas this should hardly be a surprise since it is built
into the comparison!

In our research lab, as mentioned above, our discomfort with this
situation led us to focus on mathematical actions, on the doings of math-
ematics. I present some aspects of this view below, and then outline how
and what this view on mathematical actions led us to develop in relation
to data analysis.

3. Mathematial ations and possibilities, part 1: what is it?

One significant question to ask is “What do we mean by doing |mathe-
matics?”. It would take too much space to explain this in detail here, and
we have already developed extensive arguments in three earlier publica-
tions (Maheux & Proulx, 2014a, 2014b, 2015). However, doing |mathema-
tics goes beyond the usual views of producing, being the author of, de-
veloping, fabricating, elaborating, giving form to, constituting, accom-
plishing, making, being the cause of, determining a way of being, giving
a quality, a character, or a state to something, changing, transforming,
acting, behaving, and so forth. In a nutshell, doing|mathematics means a
transformation related to the mathematical domain. And this obviously is
continually in relation to the observer who claims/recognizes that trans-
formation. Hence doing |mathematics is recognition by an observer of a
transformation related to the mathematical domain for that observer.

Doing|mathematics is thus not a representation in relation to indi-
viduals (of personal knowledge) or to the discipline (of the established
mathematical knowledge). Doing|mathematics as transformations are ob-
servable events that can participate in the elaboration of mathematical
meaning. Thus remembering Maturana’s (1988) quote about algebra, do-
ing |mathematics is said to be mathematical if the observer gives it mean-
ing and relates it to other doing|mathematics linked for that observer to
the mathematical domain (defined by that observer). Going further by
using Bateson’s (1979, p. 228) concept of information, we can say that
doing |mathematicsis for an observer is an act of distinction of “any differ-
ence that makes a difference” at the mathematical level for that observer.

This focus on mathematical doings led us to propose a transformation
of view, not one focused on a state of affairs (“it is” versus “it is not”)
but toward the possibilities, the potential of these actions, to where they
lead. In that sense, we are aligned to the mathematician Dave Henderson’s
(1981) view of mathematical correctness:
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I relate correctness to the goal by saying that something is correct
to the extent it moves an individual or group of individuals in the
direction of an expanded understanding and perception of reality.
[. . . ] In particular, an argument is correct to the extent that it
expands a person’s understanding and perception. So what’s correct
depends both on reality and on the individual. I claim that this
is what we all naturally try to do whenever we are involved in
understanding or communicating mathematics. How do we view
mathematical arguments? When do we call an argument good?
When do we consider it convincing? – When we’re convinced! –
Right? – When the argument causes us to see something we hadn’t
seen before. We can follow a logical argument step by step and
agree with each step but still not be satisfied. We want more. We
want to perceive something (p. 13.)

This offers a view oriented toward what can be made possible by these
mathematical actions, what it can lead to, where it extends; rather than
a focus on what is supposedly missing, a state of affairs of what one does
know or does not know. I discuss this orientation below.

4. Mathematial ations and possibilities, part 2: data analysis

As researchers, in our research lab, we are interested in the potential,
in the possibilities, in the extensions, or even in the future one might say,
of what students do, of their mathematical actions. This view requires
an important methodological shift for analyzing students’ mathematics
(something we begin to discuss in Maheux & Proulx, 2015).

With this positioning, the stakes of analyzing data rest no longer in
the truth or validity of students’ mathematics, but in what they offer
to oneself and another. Thus, the approach engaged in for data analysis
implies the necessity to move away from questions about mathematical
knowledge or knowing and focuses on students’ actions for imagining
possibilities for mathematics education, for seeing extensions, rather than
arguing for or against taken-as-given practices, activities, tools, and so
forth. Following Jarvis’ (2004) idea of speculative thinking, the inten-
tion is to imagine possibilities, to draw them out by analyzing students’
mathematics.

Even if it prevents us from making direct assumptions about what
students might know or not know – as if they were holding knowledge
one way or another – studying students’ mathematical actions makes it
possible to make sense of these propositions as diverse ways to approach
and go about students’ mathematical activity. That is, regardless of the
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“trustworthiness” of the students’ oral account of their thinking processes,
or the possible relation of the strategies observed with fixed/preexisting
forms of knowing, these strategies can be discussed in terms of action
possibilities. Inspired by Châtelet’s (1987, 1997) notion of the virtual,
analysis of the strategies is conducted in order to produce interpretations
that open to a mathematical plan for creating possibilities out of those
strategies; an orientation that does not aim to reify and map the mathe-
matical activities engaged in (e.g. ways of reading an equation, of solving
a problem), because this would tame them and fix them. In contrast,
Châtelet suggests keeping them alive, seeing them as “creators of possi-
bilities,” as moving powers, as provocations. These possibilities of making
sense of, of creating meaning about students’ mathematical activity are
central to our community of mathematics education researchers.

The language used in terms of the observer’s point of view transforms
assertions about what are seen as findings and what is learned from them:
it points to the virtual, to potential extensions, it opens to what could be
created by it and how it can make us think in different ways. Thus when
we speak of mathematical potential, of its virtuality, of its future, it is
always from the point of view of judgment of the observer, in what this
observer considers mathematically potential. In order to illustrate these
ideas about analysis in terms of potentialities, in the following section
I analyze three examples taken from my own studies on mental mathe-
matics.

5. Mathematial ations and possibilities, part 3: examples

5.1. Example #1: solving algebrai equations

In a study about mental algebraic equation solving, adult solvers (fu-
ture teachers) were asked to solve various usual algebraic equations men-
tally (they were given 15-20 seconds to solve). These equations were of the
form Ax+B = C, Ax+B = Cx+D, Ax/B = C/D, Ax2 +Bx+C = 0
(see Proulx, 2013a, b, for more details).

As a first example for discussing the perspective on data analysis
in terms of potentialities and extensions, Figure 1 illustrates one of the
strategies engaged in to solve the equation 5x + 6 + 4x + 3 = −1 + 9x.
The participant explained that there was no solution, because we can
easily see 9x on both sides of the equality, and that on each side, without
adding them, there were remaining numbers that did not resulted in the
same value. This leads to the conclusion that no x exists that can make
different numbers become equal.
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Figure 1. Example of the global reading strategy.

One finds in this a global reading strategy of the equation, which
enables a rapid answer and puts forward the importance of analyzing
the equation to solve without plunging into its mechanical resolution. In
addition, this strategy permits the solving of a number of complex tasks
that can be analyzed globally. For example, for x + x2 = 2x2 + 5 − x2,
a global reading can lead one to see that there are redundancies on each
side of the equality sign, in x and in x2, thus leading one not to consider
them in the solving and asserting that x = 5. With this global strategy,
the “noise” provoked by the exponent 2 in x2 is avoided on the basis of
repetition; in the same way as for the presence of a fraction in the well-
known example x + x

4
= 6 + x

4
from Bednarz and Janvier (1992). This

global reading strategy, focused on the search for a value of x that renders
the equality true, leads to an analysis of the equation to solve rather than
entering into its solving “head first”.

5.2. Example #2: operations on funtions

In another experiment, Grade-11 high school students (15-16 years
old), had to solve graphically usual tasks about operation on functions
(see Proulx, 2015a). The graph of two (or three) functions were repre-
sented in the Cartesian plan on the whiteboard, and students had 15-20
seconds to operate on these functions and then draw their response on a
blank sheet with a Cartesian graph on it (with the line y = x drawn on
it as a referent). Figure 2a illustrates a task where students had to add
functions f and g, and Figure 2b displays one of the strategies developed
to solve it. To solve the f + g task, students paid attention to the fol-
lowing points: (1) where f cuts the x-axis (x-intercept), resulting in an
image-length in g (because the image-length in f is 0); (2) where f and
g cross each other and have the same image-length, resulting in an image
double the value than where they intersect; (3) where f and g cut across
the y-axis (y-intercept), resulting in a similar process as in (2); (4) where
g cut the x-axis as in (1).
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a) b)
Figure 2. (a) The f + g task; (b) The strategy focused on significant points to sol-
ve it.

This strategy, focused on significant points that enable determining
where the line/function is, has potential, e.g., in relation to an extension
toward multiplication of functions. Indeed, paying attention to points
1 and 4 permits one to evaluate the general shape of image-length for
an x smaller than that at point 1: with negative values of f multiplied
with positive images of g giving negative values in its multiplication; the
same is true for images with an x bigger than the one of point 4. For
values in x situated between points 1 and 4, the multiplication of images
gives a positive value, leading one to see the quadratic function (2nd
degree) created by the multiplication of two linear functions (1st degree).
This entry through points of significance opens toward a sensitivity to
graphical elements related to these functions, what can also be linked to
the study of inflexion points and zeros (obtaining in this case the following
analytical table [+ | − | + ]).

5.3. Example #3: systems of linear equations

In another experiment, adult solvers (high school teachers) were given
15-20 seconds to solve a number of usual tasks on systems of equations,
given algebraically on the board, and then to draw their response on a
blank sheet with a Cartesian graph on it (also with the line y = x drawn
as a referent) (see Proulx, 2015b, for more details). In the case of solving
the following system of equations “y = x and y = −x+2, Figure 3 shows
the answer given by one participant that is, the line x =1.

The participant drew the vertical line, that is x =1, explaining that
he did not have enough time to find the value of y, but that the solution
had to be on this line because when replacing x = 1 in each equation,
it gave the same value. Of note is that the substitution of x = 1 in
the equations directly gives the value in y (equations being of the form
y = mx + b). However, in his algebraic manipulations to find the value
for x, the emphasis is on finding a common x that gives the same answer
(x = ? and −x + 2 = ?) and not on finding the value for y even if it is
the same value. But in his strategy, both were done/seen separately.
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Figure 3. The line x = 1 given as the answer to the
system “y = x and y = −x+ 2.

Even if incomplete, this strategy introduces many mathematical pos-
sibilities and extensions. The line x = 1 permits representation of all
possibilities for y to solve the system, even if only one value will be able
to satisfy both equations simultaneously. In addition, this line x = 1
represents a family of solutions to the system of parametrical equations
“y = x+ k et y = −x+ (2+ k)”, leading to the study of parameters with
k = 0 for the parameter of this system that has (1, 1) as a solution. Also,
this “omitting” to pay attention to y highlights an interesting obvious fact
that the value for x = 1 for both equations is the value for y, and thus
doing this is also working on the value in y because the value in y needs
to satisfy both lines of the system of equations. Finally, the intersection
of x = 1 and the referent line y = x is exactly where the solution point is
situated, permitting one to insist that the solution is part of both lines of
the system; obvious facts often buried under the algebraic requests and
that this strategy underlines.

6. Conluding remarks

Little more can be said, and it would not be interesting to restate
everything here. Of importance, however, is the orientation that we take
toward students’ mathematical actions, not seen from a deficit point of
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view, or as things that one can take and grasp. This is an important
point, because some might be tempted to think that we aim to oppose the
deficit view with some kind of “positive” view, focusing on what students
know and not on what they do not know (the metaphor of the glass half
empty versus the glass half full). Our proposition toward mathematical
actions and analyzing them in terms of potential is differnt. The deficit
and the positive views represent both sides of the same coin. Both offer
a consideration of a state of affairs, of what is, and of knowledge being
a thing that someone has or does not have. As mentioned above, we are
not comfortable in our research lab with any of these positioning, and are
orienting ourselves toward the possible, the potential, the extensions, the
future of mathematical actions; a “possible” that, we believe, has much
potential for the future of mathematics education research.
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Affetive transgression � a new perspetive on the

problem of low ahievement in learning mathematis

Abstrat. The idea of bringing the concept of transgression into the
field of mathematics education has emerged from a reflective ap-
proach toward the practice of teaching. The considerable number
of low achieving students, the “underachievement syndrome”, and
the phenomenon known as math anxiety are examples of problems
for which the field of mathematics alone is insufficient to provide
either prevention or remedy. Thus, mathematics educators take up
the challenge of exploring the diversity of sciences to search for ef-
fective tools in other domains, for instance psychology, philosophy
and pedagogy. An important goal is to test such tools and intro-
duce the most promising findings to the research community. This
paper offers a new perspective on the problem of low-achievement,
drawn from study of the literature on affect in mathematics edu-
cation and the author’s adaptation of the psychological concept of
transgression.

1. Introdution

Mathematical competencies are necessary to many domains of life and
labour. At every stage results achieved in mathematics become the gate-
way to further education and realization of professional aspirations of the
individual. Nevertheless, many students achieve unsatisfactory learning
results. It is unsettling that each year, among those students in Poland
who do not pass their high school final exam there are many who fail in
mathematics. Gruszczyk-Kolczyńska and Zielińska (2009) highlighted the
complexity of the problem:

Key words and phrases: affective transgression, emotions, mathematics related
beliefs, low achievement in learning mathematics, math anxiety..
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The situation of students who encounter failures in learning math-
ematics is so complicated, that it is hard to help them effectively.
(. . . ) Delving into the sources of this phenomenon might contribute
to increasing the efficiency of mathematics education (p. 4).

The difficulties intrinsic to mathematics, together with didactical er-
rors in teaching and curricular flaws, might be considered by some to
be the main reasons for students’ failure in mathematics (Krygowska,
1975). The traditional Polish approach toward problems of mathemat-
ics education has focused on the subject matter content of mathematics,
ways that teachers can express the scientific knowledge in a form that
can be applied at school, the cognitive aspects of learning mathemat-
ics (with special emphasis on students’ errors and teachers’ reactions to
them), and the metacognitive strategies students choose when facing the
problem. However, contrary to commonly held views, mathematical ac-
tivity is not purely cognitive (Schoenfeld, 1983; Op’t Eynde, De Corte
& Verschaffel, 1999; Liljedahl, 2005). Thus, it is worth investigating the
multidimensionality of some other aspects of mathematics education as
well. During the last decades, many researchers have paid increasing at-
tention to affect. The basic structure of the affective domain is comprised
of emotions, attitudes, beliefs (McLeod, 1992) and values (DeBellis &
Goldin, 2006):

Affect is symbiotically related to learning in mathematics education
– students’ beliefs, attitudes and emotions influence their learn-
ing in mathematics classrooms, and conversely, students develop
mathematical beliefs, attitudes and emotions as they are engag-
ing in the activities of the mathematics classroom. (Grootenboer
& Marshman, 2015, p. 30)

Affect has been interpreted as
a system of representation, encoding information about the exter-
nal physical and social environment, mathematics, cognitive and
affective configurations of the individual, cognitive and affective
configurations of others (De Bellis & Goldin, 1999, p. 37).

One of the most important aspects of affect is meta-affect which refers
to:

affect about affect, affect about and within cognition about affect,
and the individual’s monitoring of affect through cognition (think-
ing about the direction of one’s feelings) and/or further affect (De-
Bellis & Goldin, 2006, p. 136).
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Just as metacognition stands in relation to cognition, so meta-affect
stands in a direct relationship to affect. According to some researchers
(McLeod, 1992), in order to increase the impact that research has on the
effectiveness of mathematics education, major emphasis should be placed
on affect.

2. The Role of Emotions and Beliefs in the Learning of Mathematis

Emotions and beliefs represent opposite ends of the affective con-
tinuum. Emotions are described in terms of rapidly changing states of
feelings. They are typically locally and contextually embedded (DeBellis
& Goldin, 2006). Being experienced either consciously or nonconsciously,
emotions range from mild to intense. McLeod (1992) describes them as
“hot” components of affect. We all experience a wide range of emotions,
and as “the states of emotional feeling carry meanings for the individual”
(DeBellis & Goldin, 2006, p.133), we may differ in the way we interpret
our states. For example, two people experiencing a physiological arousal
can assign different meaning to it. One might find arousal to be a signal
that the problem he or she is dealing with is a challenging and non-trivial
one, whereas somebody else might interpret the arousal as an indicator
of threat. Jamieson, Mendes, Blackstock & Schmader (2010), show that
our interpretation does influence the results of our actions. In their study,
a group of students were told that the arousal they feel before taking an
exam is a sign that the body is mobilizing resources to meet the task
demands, and that the arousal actually helps to focus and do well on the
exam. On the test these students achieved higher scores than their peers
from the control group, who were not given this information, although
the abilities of the two groups were comparable. This finding supports
what DeBellis & Goldin (2006) had already suggested, that developing
powerful meta-affective structures can turn out to be a key to unlock
mathematical power in learners.

In contrast to emotions, beliefs are often considered to be rather sta-
ble and “cold”. There exists no specific definition of beliefs that the whole
research community agrees on. This problem has been a subject of an on-
going discussion (Furinghetti & Pehkonen, 2002; Grootenboer & Marsh-
man, 2015). The stability of beliefs has also been called into question
(Liljedahl, Oesterle, & Bernéche, 2009). In this paper, I focus on the
learners’ mathematics related beliefs. These are understood to be what
the individual holds to be true about the self (in relation to mathemat-
ical activity), the nature of mathematics as a scientific discipline, and
the learning and teaching of mathematics as a school subject (Underhill,
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1988; Pehkonen, 1999; Lester, 2002; Goldin, 2002). This paper is also built
on the assumption that belief systems can undergo an effective process
of change.

People in general show a tendency to formulate beliefs on the basis
of their experience. The same phenomenon occurs in school settings. For
example, a student experiencing some recurring negative emotions while
doing mathematics may come to one of the following beliefs: I am a hu-
manist, I do not have a “mathematical brain”, mathematics is irrelevant,
there’s no point in learning this subject, and so forth (Pieronkiewicz,
2015). These beliefs might be considered as defense mechanisms against
mathematics (Nimier, 1993), and their role then would be to ease the
tension and remove the source of frustration. By providing a reasonable
explanation of facts or events that would otherwise be unbearable, beliefs
help to sustain the state of equilibrium. One role of stable beliefs, thus,
is to reinforce defenses against pain and hurt (Goldin, 2002).

A number of examples of students’ mathematics related beliefs can be
found in (e.g., in Lampert, 1990; Schoenfeld, 1992; Kloosterman, Stage,
1992). The exemplary list of “Typical student beliefs about the nature of
mathematics” cited below comes from Schoenfeld (1992, p. 69)

Mathematics problems have one and only one right answer.
There is only one correct way to solve any mathematics problem –
usually the rule the teacher has most recently demonstrated to the
class.
Ordinary students cannot expect to understand mathematics; they
expect simply to memorize it, and apply what they have learned
mechanically and without understanding.
Mathematics is a solitary activity, done by individuals in isolation.
Students who have understood the mathematics they have studied
will be able to solve any assigned problem in five minutes or less.
The mathematics learned in school has little or nothing to do with
the real world. Formal proof is irrelevant to processes of discovery
or invention.

As noted by Kloosterman and Stage (1992), students who believe solv-
ing a problem should take no longer than five minutes are more willing to
give up when it takes them more time. Students who believe there is al-
ways a step-by-step procedure leading to the solution think their role is to
figure that rule out and simply apply it. Many adolescents consider them-
selves not good enough in mathematics to be creative in the field, and
for this reason they just choose to follow prescribed procedures without
even trying to understand the justification behind them. These students
find learning mathematics by rote, memorizing and following rules given
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by the teacher safer and more adequate to their self-perceived abilities.
Kloosterman and Stage (1992) suggest that good counterexamples might
contribute to changing this misleading and maladaptive beliefs. For ex-
ample, a student who thinks he or she is not capable of solving a task
when it requires much time, should experience success in solving a time-
consuming problem to see that his previous conviction was wrong.

Students’ experiences in the classroom shape their mathematics re-
lated beliefs, but at the same time, the beliefs pupils hold have a powerful
– and often negative – impact on their behavior and the way they learn
and attempt to use mathematics (Schoenfeld, 1992). As noted by Pehko-
nen (1994, p. 3), those

who have rigid and negative beliefs regarding mathematics and its
learning easily become passive learners who emphasize remember-
ing more than understanding in learning.

Beliefs have been called a hidden variable in mathematics education
(Leder, Pehkonen & Törner, 2006). As long as people are not aware of
the beliefs they hold, it is unlikely they will change the maladaptive ones.
Thus, “if we want to reflect on our behavior, and perhaps to change it”
(Vinner, 1999, p. 146), it is necessary to bring the hidden variable into the
light of individual and societal awareness. That is why it is important to
talk about beliefs explicitly, also in the classroom. Beliefs built on negative
emotional experiences in doing mathematics contribute to the rising and
sustaining of negative attitudes toward this subject (Pieronkiewicz, 2015).
By knowing a student’s story with mathematics and delving into his or her
mathematics related belief system, we may get some better understanding
of the phenomenon known as math anxiety.

3. Math Anxiety from the Affetive Perspetive

Many researchers have investigated the phenomenon of math anxi-
ety (MA). Due to space limitations, I shall not provide a description of
MA here, but instead, I refer the interested reader to the existing litera-
ture (e.g. Lazarus, 1974; Tobias, Weissbrod, 1980; Ashcraft, 2002; Varsho,
Harrison, 2009; Park, Ramirez, Beilock, 2014). Below I present a few find-
ings from selected research reports that potentially might contribute to
future educational interventions aimed toward helping the low-achievers
to become successful math learners. A more extended discussion of the
problem is presented elsewhere (Pieronkiewicz, in press).

The first finding here provides evidence that math anxiety occurs in
the form of neurological responsiveness of the human body. Using brain
imaging procedures Young, Wu & Menon (2012) found that the brains
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of students with identified MA show hyperactivity in the right amygdala
region, which plays a key role in the non-conscious processing of emotion,
as well as in the hippocampus, which is crucial for storing our memories
and connecting them to our emotions. Researchers also showed that MA
is associated with reduced activity in brain regions supporting working
memory and numerical processing (the posterior parietal and dorsolat-
eral prefrontal cortex). Another finding (Lyons, Beilock, 2012a, 2012b)
is that students’ brain activity is induced by the anticipation of having
to do math, not by actually doing math. Moreover, anticipation of do-
ing math activates those regions in the brain which are responsible for
visceral threat detection, including physical pain. However when one be-
gins doing what one is afraid of (in this case doing mathematics), the
neural activity of the brain changes in such a way that both unease and
anxiety are reduced. The researchers conclude that “it is not that math
itself hurts; rather, the anticipation of math is painful” (Lyons, Beilock,
2012b). This finding suggests that the experience of pain depends on the
psychological interpretation we attribute to our anticipated mathemati-
cal activity, rather than the task we are actually dealing with. For future
educational interventions to be effective, Lyons and Beilock (2012a), sug-
gest “emphasizing control of negative emotional responses to math stimuli
(rather than merely additional math training” (p. 2102). We find similar
ideas expressed by Moscucci (2007). Also DeBellis and Goldin (2006) em-
phasize that the most important goal in mathematics education is not to
“eliminate frustration, remove fear and anxiety, or make mathematical ac-
tivity consistently easy and fun” (p. 137), but rather to teach the students
how to transform each emotional challenge, into productive experiences
supporting learning and further development.

The aforementioned findings lead to two hypotheses I would like to
formulate explicitly in this paper. The first of them is the following:

Hypothesis 1 At least in the cases of some students, the root of their
explicitly declared reluctance and performed math avoidance is fear.

Negative attitudes toward mathematics serve then as defence mecha-
nisms, helping to sustain the state of equilibrium. On the basis of research
results reported elsewhere (Pieronkiewicz, in press) I recognize different
levels of emotional depth in the structure of fear:

fear of mathematics → fear of doing mathematics → fear of
failure→ fear of experiencing emotional pain→ fear of letting
oneself feel one’s true feelings→ fear of losing self-consistency
(risk of disintegration)
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On the surface and conscious level, students report experiencing fear
of mathematics and mathematical activity (or reluctance toward math-
ematics and mathematical activity respectively). A deeper analysis of
students’ utterances reveals hidden layers of previously experienced pain
and hurt, of which students still keep the affective memory. Negative
experiences from the past strongly influence future expectations. Some
students already predict failure, humiliation, and disgrace while antici-
pating mathematical activity (in other words, before they start dealing
with any problem). They are able to report on these feelings and predic-
tions. There might be, however, something more, a hidden agenda stand-
ing behind these reported kinds of fear, that students with insufficient
insight cannot bring into awareness. Some psychologists state, that dur-
ing their lifespan people learn to “avoid their primary emotions and often
need permission to feel” (Greenberg & Rhodes, 1991, p. 47). Being afraid
of losing self-consistency, people are highly motivated to avoid negative
affect. The natural aim of the self is to remain stable, but paradoxically,
it is through the process of destabilization that change and newness oc-
cur. The process of disintegration may be positive (Dąbrowski, 1979), but
only if it brings a person to self-reflection, results in raising the need for
some constructive changes, and eventually ends with reintegration on a
more advanced level of self-awareness. In order to heal emotional pain,
one needs to acknowledge it first and invite it up into awareness. From
what Curtis (1991) reports, it seems that avoiding mathematics and using
the “I don’t like math” defence may not only keep the affective memory of
yesterday’s hurts alive, but also reinforce its powerful impact on today’s
challenges.

The second hypothesis I would like to formulate, says that:

Hypothesis 2 It is possible to change a person’s affect in such a way that
neither previous negative emotional experiences, nor maladaptive beliefs
the person already holds, preclude the development of his or her potential.

To be more precise in describing the change that enables a person to
overcome affective limitations, I introduce the concept of transgression,
on the basis of which the definition of this particular change is formulated.

4. The transgressive onept of man

The term transgression has different meanings depending on the con-
text in which the word is used. In geology transgression denotes the
spreading of the sea over the land. In genetics the term means the in-
crease in growth, size, fecundity, function or other characteristics in hy-
brids over those of the parents. In both examples “to transgress” means
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“to cross some existing boundary or limitations”. The concept of trans-
gression has been brought into the psychology domain for the first time
by Kozielecki (1987, 1997). To this psychologist a man is a self-directed,
expansive creature who is capable of intentionally crossing the bound-
aries of what he is and what he owns, to become who he might be, and
to obtain what he might possess. Kozielecki emphasizes the importance
and the developmental character of crossing over personal boundaries
and subverting limitations in everyone’s life. Acts of transgression can be
taken in one of four worlds of transgression: a) material objects – terri-
torial expansion in the physical world, b) other people – expanding the
control over other people but also altruism and extension of individual
freedom, c) symbols – intellectual expansion; going beyond the informa-
tion given, development of knowledge about the world and d) oneself –
self-creation, self-development, unlocking one’s potential. In that sense,
transgressions may be of different kinds: psychological or historical, indi-
vidual or collective, constructive or destructive, but also, on other level,
it can be creative or inventive and expansive (e.g. material, interpersonal,
intellectual expansions). Kozielecki observed that people take one of two
kinds of actions: protective – oriented toward the maintenance of the sta-
tus quo and transgressive – exceeding the boundaries and enabling the
development of personality. The main characteristics of these two types
of human activity are juxtaposed in the table below.

Protective actions Transgressive actions

necessary: “I know I have to” possible: “I know I am able to”
play key role in adaptation and survival satisfy higher needs of a human being

regulated by the needs of deficit regulated by the needs of growth
maintain the status-quo bring forth a meaningful change

depend mostly on the external environment depend mostly on personality traits
repeatable non-recurring

planned and often predictable spontaneous and harder to predict
accompanied by negative emotions, accompanied by positive emotions,

especially fear especially hope

Table 1. Main differences between protective and transgressive actions.

The concept of transgression is described more detail in (Pieronkie-
wicz, 2015).

5. Affetive Transgression in the Learning of Mathematis

The concept of transgression can be applied both to the cognitive (Se-
madeni, 2015) and to the affective (Pieronkiewicz, 2015) domain. People
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are potentially able to reflect on their cognition, emotions, attitudes, be-
liefs and values. Thanks to self-reflection we are able to recognize some
counterproductive or maladaptive elements of our cognitive and affective
structure. When we find an element that is not working to our advantage,
we may repair it, remove it and when necessary replace it with another
one. Many people are afraid of such changes, as if the stable sense of
themselves depended on the stable content. However:

A person is not dependent on a stable form for a sense of identity
but rather on a sense of self as the agent of experience with conti-
nuity over time. (. . . ) Pathology emerges when the self-organizing
process becomes stuck in organizing the experience of self in a rigid
fashion. (. . . ) This complex rigidification often occurs because of
certain overlearned responses to recurring threatening environmen-
tal conditions in which the person, as a function of anxiety, repeat-
edly organizes himself or herself in a particular manner. In threat-
ening circumstances in which the self is being damaged, the trauma
of the situation appears to produce such anxiety that the person
hangs onto the familiar sense of self as a source of security and
self-protection and forms a sense of coherence around a sense of
being damaged. In so doing the person loses the capacity for flexi-
ble and spontaneous organization. It is as though the risk of being
the process that one is and entering varied forms of organization
is too high because the consequences are unpredictable. A sense of
control of one’s world can only be maintained by being a particular
familiar way. The advantages of being this self are that the experi-
ences, even if negative, are at least known. (Greenberg & Rhodes,
1991, p. 43).

In our daily life we often see people who are afraid of going through
a change. Change involves not only reorganization of the external struc-
ture we live in, but also sometimes a revolutionary modification of one’s
internal cognitive-affective network. We show a tendency to clinging onto
the schemas we know very well, even if they are negative. We choose,
what we are more familiar with. When we look from this perspective at
students dealing with mathematics, we may better understand the phe-
nomenon of math anxiety and its resistance to treatment. Often the loss
of self-confidence in mathematical activity begins with occasional failure
to understand mathematics. This may lead to a series of failures on math-
ematical tasks or tests. Sometimes these failures take place in front of the
class, which itself is a very stressful experience. Many students confess
they have been stigmatized by their teachers and assigned to the group
of so called “weak” students. Taking the challenge of changing his status
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as a low-achiever, a student takes on the risk of another failure (hence
pain), losing the sense of self-consistency (lack of internal and external
stability), facing the unknown and the unpredictable. Taking the first
step toward such a change requires a lot of courage, determination and
even more. The necessary condition for the change to happen is that the
student has insight into the emotions s/he has experienced so far and
into the beliefs s/he has formulated since these experiences have begun.
Such self-awareness needs to be accompanied by the will to change, and
a deep conviction that the change is good and possible.

The intentional process of overcoming personal affective barriers that
preclude one’s mathematical growth and development is called affective
transgression. The process is a psychological, individual and construc-
tive transgression toward oneself. The schema below presents where in
the structure of affect, transgression should intervene in order to reverse
persisting negative patterns.

Learning mathematics, seen through the lens of the transgressive con-
cept of a man, may become an activity leading not only to improvement
of one’s skills and increase in one’s knowledge, but also to inner growth
and personal development.

The teacher’s role in supporting the process of affective transgression
should not be underestimated. It is the teacher who can give his low-
achieving students the

opportunity to experience themselves in a new way, to discover that
they can survive what is dreaded or feared, that they can once
again experience themselves as agents of their experience, rather
than as victims, and that they can trust in their own continuity
regardless of the content of their experience (Greenberg & Rhodes,
1991, p. 44).

Figure 4. The role of affective transgression in the structure of affect.
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6. Final Remarks

Instead of summarizing what has been presented in this paper, I would
like to end up with a question: Can the future interventions that educators
may take in order to help low-achieving students transgress their fears be
successful?

I presume, there are two possible answers to this question. One, raising
some doubts seen clearly from the teachers’ perspective, expressed in the
very sceptical spirit of Vinner:

There are two essential conflicting elements in the human psychol-
ogy which are active in the domain of teaching and learning math-
ematics: the need for meaning and the ritual schema; (. . . ) there is
no chance that one tendency will take over the other. The educators
will continue their call for meaningful learning, whereas the masses
of students will prefer the ritual (procedural) approach. (Vinner,
2000, p. 121).

The other one, representing the more optimistic and enthusiastic ap-
proach, is expressed in the words of Yeager and Walton (2011) who believe
in the powerful potential of therapeutic interventions:

Seemingly “small” social-psychological interventions in education
– that is, brief exercises that target students’ thoughts, feelings,
and beliefs in and about school – can lead to large gains in student
achievement and sharply reduce achievement gaps even months and
years later. (p. 267).

Consideration of affective transgression as described here suggests the
fundamental importance of the affective dimension in learning mathemat-
ics. To successfully apply this theoretical construct in school settings, we
need a multidimensional affective profile of low-achieving students. In
addition, we need to investigate moments when the change occurs, as
well as moments when students refuse to go through with the process of
transgression.
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Abstrat. Mathematics education is a very vast field of research. But
despite the quality and quantity of valuable research, the difficul-
ties that students encounter in learning mathematics at school are
widespread. This not only causes discomfort in children and young
people, but also frustration in mathematics teachers. Moreover, one
has to consider the social damage that results from it. Due to dif-
ficulties in mathematics in secondary school, many young people
are deprived, firstly, of the opportunity to acquire skills in math-
ematics, and secondly, of the choice of pursuing degree programs
that provide math courses. The author has accepted, since the early
2000s, the invitation of eminent mathematics education scholars to
address parts of the research efforts to overcome the disconnection
between the scientific research in mathematics education and the
mathematics teaching practice. The aim of this presentation is to
submit an approach to the problem of the difficulties in mathe-
matics consistent with this objective. In particular, the author will
deal with the issue of relationships, both in mathematics education
research, presented in various meanings, and in mathematics class-
room practice. Moreover, an educational path called MBSA will
be presented, which is designed for the restructuring of the rela-
tionship of a person with mathematics, and which is widely used
during both mathematics courses, in every level of education, and
mathematics education courses, addressed to either future teachers
of mathematics or ones already in service.
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difficulties in mathematics.
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1. Introdution

The II Interdisciplinary Scientific Conference “Mathematical Trans-
gressions” offers researchers in mathematics education a wonderful op-
portunity to reflect on their research: its nature, its consistency, and the
fallout on the quality of teaching and learning in math classes. Metasearch
reflections are necessary, from time to time, for the researchers to remain
concrete. Indeed, research, for many of the researchers, is a passion, and
like all passions, often may get out of hand and become self-referential.
It so happens that researchers fall in love with their research, thus it be-
comes the main purpose and makes them forget the fundamental purpose
of their studies. In some areas of research, the matter is different: for ex-
ample, research in mathematics can be very productive, even if it is not
specifically aimed at a definite purpose. If George Boole had not enjoyed
studying his algebras, maybe today the world would be different. . . but
certainly it was not Boole’s aim to contribute to computer science, nor
to change the world! For mathematics education, it is another matter. It
was created to study the learning and teaching of mathematics, which
were perceived as issues worthy of further investigation. Let us remind
that Alan Schoenfeld (2000) in “Purposes and Methods of Research in
Mathematics Education” pointed out, as early as the year 2000, that
mathematics education research has two main purposes: one pure and
one applied. The pure one (basic science) aims at understanding the na-
ture of mathematical thinking, teaching, and learning. The applied one
(engineering) is focused on using such understanding to improve math-
ematics instruction. These purposes are deeply interdependent and they
are equally important. Currently, in mathematics education research, it
is rare to find papers purely focused on classroom practice for the ap-
plication of theories, because often the line between theory and practi-
cal application is nuanced. In fact, it happens that ideas emerge from
classroom practice and then they are specified and developed theoreti-
cally. Conversely, it happens that analysis and insight in theory lead to
ideas for achievements in teaching. However, it is a fact that research in
mathematics education is now very wide and prosperous. The II Interdis-
ciplinary Scientific Conference takes place approximately a month after
CERME 9 in Prague where 699 mathematics education researchers, com-
ing from all over the world, presented their research results and compared
their ideas. But despite such a great movement of ideas, what happens in
our schools, in math classes? Very often, many students suffer because of
mathematics! And even if it did not happen often, and even if there were
few cases, it would still be too often and too many! And when students
do not suffer because of mathematics, very often, too often, mathematics
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slips away from them without affecting their mind, let alone their hearts!
What I mean is that the study of mathematics at school would lead to
strengthening and restructuring mathematical thinking, which is a natu-
ral gift of every human being, firstly as a primate, also as a human being!
There is no need for a domestic or international investigation to know
that school mathematics very often causes suffering for the students as it
is a well-known fact, and promoting research in this direction would be a
waste of time and money. However, I can recall that in Italy, for example,
it was stated (Moscucci et al., 2005) that there is a close connection be-
tween mathematics difficulties at school and school drop-out, in that the
difficulties in mathematics are an ’endogenous variable’ of school drop-
out, a factor that is present inside the ’same educational institution’ that
fosters school drop-out. So, without reaching the limit of school drop-
out, the difficulties that students encounter in school are a well-known
problem while earning the discipline. This not only causes discomfort
in children and young people, but also causes frustration in mathematics
teachers. Moreover, the resulting social damage has to be considered with
great concern: many young people, because of the difficulties in mathe-
matics in secondary school, are precluded the choice of degree programs
that provide mathematics courses. In conclusion, mathematics education
researchers must acknowledge that in the face of such a high quality and
quantity of research, in schools, teaching and learning mathematics does
not work effectively. I recognize the freedom of the researcher to freely
choose the objects of their research, but, in my opinion, very often, too of-
ten, research in mathematics education deals with refined questions that
are understandable and interesting not even to all mathematics education
researchers, but only to the experts of particular mathematics education
research sectors. This is why I often compare this type of mathematics
education research to the inflating a soufflé in culinary art! I call it “the
mathematics education research of inflating a so ufflé”! This does not ap-
pear to conflict with my statement of appreciation of the freedom of a
researcher. Indeed, I think it is very appreciable research, but it would
be better if they were debated in working groups of the specific sectors
and only then published, without taking up space in magazines that are
a means of spreading ideas not only among non-experts, but also, for ex-
ample, among mathematics teachers. I think that mathematics education
researchers should address the problem of the difficulties in mathematics
with greater determination, because too many of them are concerned with
how to inflate the soufflé better, and too many students are ’starving for
mathematics’ ! I have been dealing with difficulties in mathematics for 37
years and, since the late 90s, I have started to follow an approach not
only regarding the problem of difficulties in mathematics, but also the
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’significance’ of studying and teaching mathematics, which I call ’holis-
tic’. This approach is based on the concept of a relationship in more than
one way: this concept guided me towards putting forward two propos-
als to the scientific community which I am proposing on this occasion
as well. My interpretation of “mathematical transgressions” regards both
the approach to research in mathematics education and the teaching of
mathematics at all levels and that, as I was saying, takes the form of two
separate proposals, which are absolutely interdependent: one theoretical,
and one experimental. I will not be going into the description of the the-
oretical framework within which the two proposals are situated, as that
may be found in papers specifically focused on them (Moscucci, 2007;
2009; Moscucci and Bibbò, 2015). Here, I am mostly sharing an overall
rationale behind the two proposals in order to fully appreciate the mean-
ing and the potential of them and to have the opportunity of a fruitful
discussion.

2. The diffiulties in mathematis

2.1. Questions about diffiulties in mathematis

Addressing the problem of difficulties in mathematics means to first
ask the following questions: 1. What is the aim of teaching school mathe-
matics? 2. Is school mathematics teaching functional with the aim stated
or presumed? 3. What does it mean’ to have difficulties in mathematics’?
4. Who has difficulties in mathematics and why? 5. How to overcome dif-
ficulties in mathematics? I do not want to answer to all these questions
extensively right now, opting to give some indications and avoid any
possible, though maybe useful, discussion about the meaning of school
mathematics, because I believe that we all have a naive idea of school
mathematics, which is independent from our country of origin. In my
opinion, the purpose of mathematics teaching is to promote the
potential of the person. Because this is not the specific purpose of
mathematics, but of all school subjects, I point out that, in regard to
mathematics, this aim might conduce every mathematics teacher to help
their students be able to: face problematic situations. . . problem
talking, problem finding, problem posing, problem solving, and acquir-
ing competences in mathematical languages or, as Bruno D’Amore
might say (for example, D’Amore et al., 2003), acquiring mathematical
competences and acquiring competences in mathematics. This does not
appear obvious in all countries and in all schools: In Italy, for example, the
aim of mathematics teaching is especially focused on second competences
and very little on the first ones. Acquiring the two types of competencies
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does not require different and separate teaching/learning paths: indeed, a
teaching methodology inspired by various types of constructivism, grad-
ually and properly selected by the teacher, is an exceptional opportunity
for the realization of naturally arising synergies. This method of approach
to the teaching of mathematics allows the teachers to organize work in
math classes in order to really make the discipline a means of promo-
tion of personal potential. In conclusion, I think it is an excellent way to
reach the objective of making mathematics a means of personal promo-
tion. Moreover, the choice of mathematics topics might be a good issue
to discuss, but now and here this is not the right occasion.

2.2. The meaning of diffiulties in mathematis: who has diffiulties in

mathematis?

In the light of what I have said so far about the aim of the teaching of
mathematics, the term ’students, and people in general, with difficulties
in mathematics’ does not strictly mean’ those who are not good at math-
ematics’, but’ those who are not able to use mathematics to promote their
potential’. In my opinion, the reason why this happens so often at school
is the traditional teaching method that is based, almost exclusively, on
the transmission of knowledge without a high active participation of stu-
dents in the classroom work. I have noticed, during my work in Italian
schools, that many students with good school results have not mastered
the basic concepts of discipline and, for example, in regards to algebraic
language, they only have competence from a syntactic point of view, not
from a semantic one. In conclusion, overcoming difficulties in mathemat-
ics does not mean to help someone who is not good at mathematics, but
almost all the students, to make the discipline a means of personal pro-
motion, and, as a consequence, to help most mathematics teachers, at
least in Italy, to work with this aim. Now, if we agree to this goal, the
fundamental question is the following, summarized as “How?”, that is,
“How can we realize this, firstly, as mathematics education researchers
and, secondly, as mathematics teachers?” In the following, I will describe
two proposals: one for empirical and developmental research (Moscucci,
2007) and one already presented at CERME 9, held in Prague in February
2015 (Moscucci and Bibbò, 2015), for theoretical research.

2.3. The relationship between the person and mathematis

Since the 80s, I have been interested in the problem of difficulties in
mathematics and I approached it using a particular methodology that
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provides first, both temporally and substantially, the analysis, the con-
sideration, and the revision of mathematics related beliefs and emotions
of students with difficulties. In the late 90s, this approach led to the re-
alization of an educational path that has been used, since then, by me
and by all the math teachers who took one mathematics education course
of mine, both as prospective teachers of mathematics and as in-service
teachers. This path deals, firstly, with the acquisition of the awareness
of one’s beliefs involved in viewing mathematics and self-confidence to-
wards learning mathematics. Then, with the reworking of these beliefs to
overcome any misconceptions, and the reworking of emotions linked in
any way to mathematics. It is a serious rebuilding of the relationship of
the person with mathematics. Indeed, during those years of working with
the difficulties in mathematics, it emerged that students manifest the
tendency to personify mathematics. This finding is supported not only
by drawings related to mathematics (examples of representation: an old
witch, an elderly lady dressed in black, grim, even a woman who hanged
herself (Moscucci, 2008 a/b)), but also by interviews, questionnaires, and
papers about mathematics, where students often refer to mathematics as
one refers to a person (for example, “She’s been haunting me for so many
years. . . ”, “She has always been an obsession!”, “Math is ugly and bad!”,
“It’s a witch!”, and note the female pronoun!). Moreover, the tendency to
personifying mathematics is not exclusive to students with difficulties, as
it also relates to students with no problems with mathematics, as well as
students of specialization schools for higher education, or future teachers
who often speak of mathematics as a person: “I have always agreed with
mathematics”, “She, for me, has always had an irresistible charm”, “Math-
ematics has never betrayed me!”. Therefore, the path that I am speaking
of was called MBSA (Meta Beliefs Systems Activity) when presented at
CERME 5 (Moscucci, 2007). It is “a path aimed to restructure the rela-
tionship of the person with math” and it has become a crucial point of
all my courses, both of mathematics education and mathematics, and, as
I said, it is routinely used by all of the teachers who attended a course
of mine during their school work. I consider that, to teach mathematics
profitably, we need, before initiating any disciplinary activities, to help
students overcome those beliefs and any ’small trauma’ involving math-
ematics. Regarding the students who do not have any ’small trauma’, it
is very difficult for them not to have any ’twisted beliefs’, or absolutely
unfounded beliefs about mathematics! At least in Italy it is so! For ex-
ample, many people believe that either you are predisposed to learning
mathematics or you are not, like a genetic matter, or at least a mat-
ter of familiarity! To remove this type of belief is not easy at all! The
distinguishing characteristic of MBSA is its emphasis on awareness: the



About the relation between relationships and teahing [123℄

students are helped to autonomously become aware of their own belief
systems and emotions and of their reasons and the way through which
such beliefs were constructed. At the same time, the students are led to
acquiring new knowledge regarding the issues of those beliefs in order to
undermine the consistency of the beliefs themselves. This path usually
has great success not only among the students, but also among teachers
of mathematics, and it has been observed that the disciplinary paths of
mathematics that they follow are definitely more profitable.

2.4. Conlusive onsideration of the empirial and developmental proposal

The path of the restructuring of the relationship with mathematics
is, in my opinion, the way to begin any path of teaching and learning
mathematics by sharing a view of mathematics that is not distorted by
the many widespread beliefs that hinder one’s work in mathematics. Also,
aside from the obvious purpose to overcome beliefs that have no scientific
basis, this path allows for the construction of an atmosphere of shar-
ing between the teacher and the students and it helps the teacher set a
real community of learning. Therefore, besides tearing down the invisible
wall that often stands between a student and mathematics, the path also
helps in reducing the wall between a student and a teacher of mathemat-
ics, and this concerns not only students with difficulties, but all students.
This leads us straight to the consideration of the other proposal, the the-
oretical one, but that has absolutely practical and actually considerable
implications.

3. From the relationship with mathematis to relationships

The realization of the restructuring of the relationship of the person
with mathematics leads very naturally to wondering about the nature
and the construction of beliefs, and then, as a consequence, to wondering
about the mind. . . that is, the ’residence’ of the beliefs, the correlation
with emotions and their nature. . . so the path is really a Trojan horse
that allows us to bring a person to reflect deeply on important issues
which are usually ignored by people and, in particular, at school by the
teachers, much less mathematics teachers. On the other hand, the results
of neuroscience of the 90s – for instance Damasio (1994) and LeDoux
(1998) – do not allow researchers in mathematics education and in ed-
ucation to deal exclusively with the cognitive aspects of teaching and
learning because, in the brain, the cognitive and emotional systems are
absolutely interdependent. Moreover, my area of mathematics education
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research, Affect, considers, since the late 80s, beliefs, emotions, and at-
titudes as historical constructs. But, also, the teachers of mathematics,
and, similarly, of all other disciplines, cannot deal exclusively with the
cognitive shape of teaching and learning mathematics! The disciplinary
competencies are a necessary condition, but certainly not a sufficient con-
dition! Both in research and in teaching, other competences are needed,
though not extensively, and not only designed to perform the function
of a researcher or of teacher. Specifically regarding the use of the path,
I never had any objections from future teachers or teachers in service of
mathematics, because my teaching method is inspired by various types of
constructivism, properly integrated, and the path that I suggest them to
use with their students is exactly what I use with them, it just changes
the mode of relating, as they are adults and their students not always
are. Therefore, it changes the ’declension’ of the activities of the path,
but not the substance, as the pivots of the path are the same. Also, after
I perform the full path, I look back with them, doing ’meta-education’,
that is, discussing with them the rationale of the path in its entirety, and
of all of the activities within the path. Since the early 2000s, the MBSA
path appeared to be successful. This success had two consequences. One
was to drive me to explore the issues that had emerged during the path.
The second was studying everything about beliefs and emotions, not only
within mathematics education, but also drawing from other fields of study
and research. All of this happened in a period when I began studying is-
sues of quantum physics and neuroscience, in which I was interested for
many years, but had never connected in any way to my research inter-
ests. Especially the studies of neuroscience seemed to be related to the
research I was doing. In fact, for example, I used the MBSA path and
then I followed it with another path aimed at recovering the calculation
skills of individuals with mental retardation, and I obtained very good
results significantly faster than speech therapists using standard meth-
ods. I understood then that an approach based on a new perspective,
on scientific contributions outside mathematics education, could really
make a change in my work. So there might be substance in finding the
rationale and understanding the reasons behind the successful path, and
maybe implementing it. I defined this new approach to the problem of
the recovery of mathematical competences and of competences in math-
ematics as ’holistic’. I was immediately fascinated by the possibility of
combining my studies with mathematics education. The enthusiasm grew
each time I discovered a link. The strongest link that I soon discovered
was the centrality of the concept of a relationship. I had already observed
that in regards to the implementation of the MBSA path, an important
variable was interpersonal relationships: the egg of Columbus? Maybe,
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but I thought there was something that I perceived clearly which was not
so clear from a scientific point of view and that certainly deserved to be
deepened. Since the early 2000s, it was clear that the success of the path
of restructuring the relationship with mathematics was strongly linked
to the quality of the relationships built by the teacher who made use of
the path. However, after about ten years, the problem of the analysis of
this quality began to take on a clearer connotation: it is likely that my
mathematical formation got along with the theories of psychology from
which I had been borrowing until then. They all seemed absolutely self-
referential. In the late 2000s, it was clear that the relationships were not
as simple as they seemed. I had the awareness of the nature of the inter-
personal relationship being at least twofold: on the one hand perceptible,
on the other unconscious. This clarity came to me in cooperation with
one of my students, who later became my collaborator, Cecilia Bibbò.
This collaboration has found its first synthesis in the presentation at
CERME 9 in Prague of the proposal to the Affect community regarding
the concept of a relationship as a new construct for this research sector
of mathematics education.

4. About the theoretial proposal: relationships

4.1. Relationships in the Affet domain

The fact that the concept of a relationship has to be considered a
real new construct of Affect is widely argued in the paper presented at
CERME 9 (Moscucci & Bibbò, 2015). Here, it may be useful to summa-
rize some points without engaging in the description of the theoretical
framework. The historical constructs on which Affect research is based
are emotions, beliefs, and attitudes (Mc Leod 1992), to which additional
values were added at a later time (DeBellis & Goldin, 1997) and other
issues were studied and recognized over time as motivation and metacog-
nition (Hannula et al., 2004). These, however, were not recognized to
be as important as the historical ones. Also, in my opinion, beliefs and
emotions are the central ones and attitudes may be considered a natural
consequence of emotions and beliefs which are the structure on which we
engage all other concepts. The mind is structured through experiences
and emotions and beliefs are the objects that constitute the pivots. Re-
lationships play an important role in defining the quality of beliefs and
emotions. Cecilia Bibbò and I are currently investigating this issue and
we will soon submit the first paper about the subject for publication.
Moreover, we believe that this issue is of great importance, not only in
mathematics education, but in education in general. The human being is
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a social animal, and as such, its nature depends, in every sense, on its in-
terpersonal relationships, from the relationships with the environment in
general, and with everything which is a part of the environment. So, the
importance of relationships within the Affect research field has a fourfold
root. One is the concept itself that affects the teaching and learning math-
ematics as much as the other constructs, if not more. The second one, as
I said before, is in the effects that relationships have on emotions, beliefs,
and attitudes. The third root is borrowed from quantum physics and says
that the nature of every object cannot be studied by extrapolating the
object from the environment. In fact, the relationships of an object with
everything with which it interacts not only determine its nature, but are
an integral part of it. The fourth concerns the meta-theoretical aspect of
Affect. Borrowing from the language of algebraic structures, we can ex-
press the situation briefly as follows. Relationships make the set of Affect
constructs not just a set of constructs, but a real structure, that is, the
relationships link the other Affect constructs, playing a role similar to
that of a mathematical operation among the elements of the underlying
set to define an algebraic structure.

4.2. About defining and haraterizing relationships

Cecilia Bibbò and I did not propose a definition of relationships, be-
cause we believe that, when dealing with an issue of mathematics educa-
tion, our scientific community might understand, without any problem,
our proposal to deal with Relationships as a sort of primitive concept
inside a sort of axiomatic theory and moving toward a characterization
of the concept. And we have already begun this characterization, as I am
going to explain. Cecilia Bibbò and I do not deal with relationships from a
usual psychological point of view, but from an absolutely innovative one.
Usually, a relationship is a set of information of interpersonal communi-
cation: verbal, gestural, mimics, tactile, postural, kinesthetic, etc., i.e. a
set of interchangeable information, or the sensory information exchanged
between two people. Cecilia Bibbò and I defined “rapport” as a set of
information perceptible by the senses. Relationships are responsible for
building the patterns of the interpretation of reality that determine the
quality of emotions, and so they guide the ability of regulating emotions.
Relationships are responsible for the building of beliefs about ourselves,
others, and the environment itself, as well as the development of beliefs
in general. All of this deals with the rapport between two people, but
between two people there is also much more. . . There is a hidden com-
munication too! Up till now, we knew from scientific results from the field
of neurobiology that some of the existing neural structures let people ex-



About the relation between relationships and teahing [127℄

change information without awareness. These neural structures refer to
mirror neurons, and, perhaps, many other things yet to be discovered.
Particularly, mirror neurons specialize in carrying out and understand-
ing not just the actions of others, but also their intentions, behavior,
and emotions, through direct feeling (Rizzolatti and Craighero, 2004).
The existence and the functioning of mirror neurons proves that there is
a ’link’ between people, and we, as mathematics education researchers,
cannot ignore such important scientific results that open new frontiers
not only for mathematics education, but for education as a whole as well.
The results of neuroscience concerning mirror neurons give the relation-
ships a completely different role from the one they always had in scientific
literature. In fact, relationships are not only an element of social and en-
vironmental interest: relationships are a structural element of a person!
Cecilia Bibbò and I began to characterize the relationships, highlighting
the double nature of relationships: we state that a relationship is the
sum of rapport and hidden communication. What is more, we are
absolutely aware that the hidden communication between people is to
be deeply investigated and that the results regarding mirror neurons are
only the small first step which proves that there exists hidden commu-
nication, but we have to investigate much more about the nature of it.
The theoretical research in neuroscience about hidden communication is
in its early stages. But this should not be a disincentive to study the re-
lationships with this aspect of communication in mind. In fact, studies of
relationships in learning environments can be a useful incentive for neu-
roscientists to study the subject. The interaction between neuroscience
and education researchers, and, particularly, between Affect researchers
and neuroscientists appears to be highly appropriate as of today and it
is reasonable to say that the collaboration between researchers coming
from such different research fields may allow for considerable progress.

5. Conlusions

Highlighting the double nature of relationships, that is, distinguishing
rapport from relationship is the first step towards a characterization
of relationships, but it is not a weak and uncertain first step: on the con-
trary, it has lead us to see relationships from a completely new point of
view! Regarding Affect research and mathematics education research, it
leads straight to an absolutely innovative approach to the learning and
teaching, particularly, learning and teaching mathematics. In conclusion,
I have dealt with: 1. relationships as a new construct in Affect research;
2. relationships as a double-nature-endowed link between two people;
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3. relationships as a link between a person and mathematics; 4. rela-
tionships as the relationship of a student with mathematics to overcome
difficulties in mathematics and to make mathematics a means of personal
promotion. These are my declensions of the concept of relationships in
mathematics education. The aim of my presentation is twofold: firstly,
to share my experience with the rebuilding of the relationship between
a person and mathematics by using MBSA. Secondly, to bring attention
of the research community in mathematics education to the concept of a
relationship, not only its overall meaning as an interpersonal relationship,
but as a sum of rapport and hidden communication.
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Abstrat. In mathematics education, theories of teaching and learn-
ing based on disciplines different from mathematics (“imported”
theories) are widely dominating the field. This imbalance greatly
reduces the impact of mathematics education both on teacher edu-
cation and on the teaching practice. In order to return to a balanced
situation it is necessary to pay more attention to theories which are
based on mathematics. As an example of such a “homegrown” the-
ory, the paper presents the structure-genetic didactical analysis,
the research method of mathematics education conceived of as a
“design science”.

A comparison of the papers published in journals and proceedings
in the 1970s and early 1980s (see, for example, the pace – setting paper
Krygowska, 1972) with the papers in the new millennium shows that over
the past two decades the coordinate system of mathematics education has
shifted massively away from

– the subject matter mathematics,
– the teaching practice and
– the critical examination of educational foundations concerning the

subject,
towards

– qualitative and quantitative empirical studies of learning and teach-
ing processes,

– the development and application of tests and
– theories of learning mathematics based on ideas imported from

other disciplines.

Key words and phrases: Design science, substantial learning environments, didac-
tical analysis, empirical research.
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This shift consciously or unconsciously involved a break from the tra-
dition of mathematics education. Nevertheless, this tradition is still alive.
In recent decades a branch of mathematics education has developed that
explicitly builds on the tradition of “subject matter didactics” as it has
been common in the past in many countries. This “mathematics education
emerging from the subject”, as it has been called, continues to carry the
teaching of mathematics and teacher education and has created a scien-
tific basis of its own. The internationally known project “mathe 2000” may
serve as an example (Wittmann, 2012). “Mathematics education emerging
from the subject” constitutes by no means “didactics from the armchair”
for which its predecessor had been criticized. On the contrary, it is sup-
ported empirically in its own way. Its specific feature is that it rests on
theories of teaching and learning that are implicit in the subject math-
ematics itself. This will be shown in this paper, which is structured as
follows: in the first three sections three central themes of the curriculum
will be considered both from the position of the present mainstream in
mathematics education and from the position of “mathematics education
emerging from the subject”. In the fourth section the research method of
the latter, the structure-genetic didactical analysis, will be characterized
and it will be indicated what can be achieved from this method.

1. Introdution of the multipliation table in the grade 2

In the curricula of many countries multiplication is introduced as “re-
peated addition” and the multiplication table is accordingly learned row
by row. The last decade has seen a vivid discussion in the Anglo-Saxon
countries about what multiplication is about. The empirical analysis of
(Park & Núñes, 2001) fits into this context. The authors compared two
hypotheses of concept formation for multiplication: multiplication as “re-
peated addition” and multiplication as a “schema of correspondences”.
What the latter means, however, remains unclear in that paper. It is
likely that the authors allude to the interpretation of multiplication as a
linear function: for a fixed multiplier c we have a mapping that assigns
the product x · c (= c · x) to any number x. As a result of their research
the authors arrive at the conlusion that “repeated addition” should not
be used for defining multiplication, but only for calculating the results.

From the perspective of mathematics education emerging from the
subject multiplication in grade 2 can be approached in the following way:
multiplication is defined as “abridged” addition, as it is common in math-
ematics. For calculating the results it is natural to refer to the laws of
multiplication: among the multiples 1 ·m, 2 ·m, 3 ·m, 4 ·m, 5 ·m, 6 ·m,
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7 ·m, 8 ·m, 9 ·m and 10 ·m there are four multiples that are trivial or
easy to calculate:

1 ·m, 2 ·m (double of 1 ·m), 10 ·m and 5 ·m (half of 10 ·m).

Other multiples from 3 · 7 to 9 · 7 can be derived from the easy ones by
means of the distributive law:

3 ·m = 2 ·m+ 1 ·m,
4 ·m = 2 ·m+ 2 ·m (or 5 ·m− 1 ·m),
6 ·m = 5 ·m+ 1 ·m,
7 ·m = 5 ·m+ 2 ·m,
8 ·m = 10 ·m− 2 ·m,
9 ·m = 10 ·m− 1 ·m.

This approach has been elaborated by Arnold Fricke in his “operative
didactics” and is widespread in German primary schools (Fricke, 1968).
In the early eighties Heinrich Winter went one step further: In line with
his general postulate to look at arithmetic from the point of view of
algebra he suggested to use rectangular patterns of dots for representing
multiplication (Winter, 1984). This proposal is also found in Courant
& Robbins (1996: 3), a classic among mathematical textbooks, and in
Freudenthal (1983, pp. 109-110). In (Penrose, 1994, pp. 51-53) it is even
stated that rectangular patterns of dots are the most efficient means to
explain what multiplication is about.

The preference of eminent mathematicians for these patterns under-
lines the fact that this representation of multiplication is not just a visual
aid which has been invented for the purpose of teaching, but that is fun-
damentally interwoven in the epistemological structure of mathematics.
The great advantage of this representation is that the commutative law,
the associative law and the distributive law can be derived in an operative
way and used in teaching (see, for example, (Wittmann & Müller, 2007,
pp. 54-56). This is not possible with other representations of multiplica-
tion.

Later in the curriculum patterns of dots pass into the representation
of a product as the area of a rectangle and this representation reaches up
to the integral. It is a fundamental idea of algebra and calculus.

Comparison: What multiplication is about and how it should be intro-
duced in the classroom, cannot be decided by means of empirical methods
imported from psychology, but should be based on a sound mathematical
and epistemological analysis. This, however, is not to say that empirical
investigations of learning processes are superfluous (see section 3).
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2. Designing a substantial learning environment for pratiing long

addition

While the first example deals with the didactical foundation of some
topic the second example leads to the very core of teaching. The natural
way to help learners to master some piece of knowledge or some skill is to
offer them substantial learning environments that stimulate mathematical
activities. Here the practice of skills plays a crucial role. Heinrich Winter
introduced the concept of “productive practice” which means a type of
practice in which contents and general objectives of mathematics teaching
(mathematizing, exploring, reasoning and communicating) are combined
(Winter, 1984).

In order to design a substantial learning environment for practicing
long addition in our project “mathe 2000” we had to browse elementary
mathematics for patterns that involve long addition. We had to check
whether children’s knowledge in grade 3 is sufficient for understanding
and solving the intended tasks, for exploring, discovering and describing
patterns and for explaining them by using familiar means with some
support of the teacher.

Our analyses led us to the following learning environment that is
based on the famous rule “casting out nines” (Wittmann & Müller 2012:,
pp. 85).

The guiding problem posed to students is as follows:

Form two three-digit numbers with the six digit cards 2, 3, 4, 5, 6,
and 7 and add these two numbers.

a) Find different results.

b) Try to reach results as near as possible to 600, 700, 800, 900,
1000, 1100, 1200 and 1300.

c) Try to find results between 900 and 1000.

The subtasks b) and c) are intended as hints for discovering the un-
derlying pattern.

Guy Brousseau’s theory of didactical situations provides a natural
framework for the teacher in putting a learning environment into practice
(Brousseau, 1997).

Here this theory can be applied as follows: In the first situation the
problem is introduced to students, best by means of examples. In the
second situation students work on their own, individually or in groups.
The teacher serves as an advisor.

In the third situation the results are collected and compared. The
teacher is free to add some more examples, and to give hints that stimulate
students to discover the underlying pattern. Subtask b) is particularly
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helpful as the optimal results 603, 702, 801, 900, 999, 1008, 1098, 1107,
1197, 1206, 1296, 1305 reveal a striking pattern: The total of the digits
of these numbers is 9, 18 or 27.

The results in subtask c) support these findings. Possible results are
900, 909, 918, 927, 936, 963, 972, 981, 990, 999.

A check with other examples will confirm this pattern. Of course
some students will offer calculations with results that seem to violate
this pattern. However, checks will reveal mistakes in the calculations.

In this way the conjecture is formed that for this problem only results
are possible for which the total of the digits is a multiple of 9.

Situation 4 in Brousseau’s classification requires the explanation of
this pattern. The place value table with which students in grade 3 are
familiar, serves this purpose perfectly (Wittmann & Müller, 2013: 120-
121): Some examples are represented by means of counters on the place
value table. It is interesting to note that in this context the total of the
digits of number has a very concrete meaning: It denotes the number
of counters that are necessary for representing the number on the place
value table.

Fig. 1 shows two examples:

Figure 1.

In the first example 5 + 2 + 7 = 14 counters are needed to represent
the first number 527 on the place value table, and 3+4+6 = 13 counters
are needed to represent the second number 346. So 14+13 = 27 counters
are needed to represent the sum 527 + 346. To execute this addition on
the place value table means to push the counters in all columns together,
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and to replace 10 counters in the Ones column by 1 counter in the Tens
column. Therefore 9 counters less than 27 are needed to represent the
result 873, namely 18 counters.

In the second example again 27 counters are needed to represent the
sum. We have a carry from the Ones to the Tens column and a second
carry from the Hundreds to the Thousands column. According to the two
carries the total of digits of the result 1161 is 27− 2 · 9 = 9.

As in all examples 27 counters are needed to represent the sum the
total of the digits of possible results must be 27, 18 or 9.

The final didactical situation is “institutionalization”. Here the tea-
cher’s task is to summarize in a concise way what has been discovered.
This might include the information that the operation of “casting out
nines” is independent of the special numbers used here: For any sum of
two or more numbers the sum of the totals of the digits of the numbers
differs from the total of the digits of the result by a multiple of 9. The
reason is that any carry involves a “loss” of 9 counters.

The teacher should also have in mind that this operative proof of the
rule “casting out nines” is not an impasse, but that it can be continued
later in the curriculum for deriving the divisibility rules (Winter, 1983).

Comparison: In this example the “home-grown” approach is unrivaled.
It is obvious that theories of mathematics education imported from else-
where, as well as empirical methods, are blunt when it comes to designing
substantial learning environments. Only a thorough knowledge of mathe-
matical structures and processes connected with curricular expertise will
lead to solutions, and this knowledge is also essential for the teacher in
doing her or his job.

3. Nets of a ube

Nets of the cube are a standard topic of mathematics teaching at the
secondary level. In this section two approaches to this topic are compared.

Susanne Prediger and Claudia Scherres have conducted guided clinical
interviews with pairs of students in grade 5 (Prediger & Scherres, 2012).
The objective of this study has been to investigate in some depth how
students proceed when trying to find as many different nets as possible.
The authors applied quite a number of empirical instruments in order
to obtain a differentiated picture of the processes occurring during the
collaboration. The results of this study are very complex and therefore
cannot be summarized in short terms. For the following comparison two
findings are relevant (Prediger & Scherres, 2012, p. 171):
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1. Pairs of students can often exhaust their potential only through the
intervention of the teacher.

2. The cooperation for exploiting the potential fully is enhanced when
this cooperation is guided by mathematical considerations.

From the perspective of developmental research the first objective of
a didactical analysis concerning the topic “nets of the cube” is to find out
at which place of the curriculum students are in a position to respond
to the requirements that certain treatment of this topic involves. At the
very outset it should be kept in mind that any beautiful and important
topic might allow for different approaches suitable for different places in
the curriculum.

In the “mat 2000” curriculum nets of the cube are embedded in the
fundamental idea of “dissecting and recombining figures”, which is sys-
tematically developed along grade levels. An easy way of determining all
possible nets is revealed in connection with polyominoes, a rich topic that
was introduced by (Golomb, 1962) and elaborated for the primary level
in (Besuden, 1984). A polyomino is a composition of congruent squares
edge by edge. Polyominoes that are congruent are considered as equal.
It is easy to see that there is only one domino (with two squares), but
that there are two different triominoes (with three squares). Children
in grade 3 easily find all 5 tetrominoes (with 4 squares) by adding one
square to triominoes, and also all 12 pentominoes (with 5 squares) by
entending tetrominoes. It is a stimulating task for kids to determine the
8 pentominoes similarly that can be folded into an open cube.

In a textbook for grade 3, the 11 nets of a cube are obtained in
the following way (Wittmann & Müller, 2013, p. 65): The children are
informed that it is possible to derive all 35 hexominoes by extending
the 12 pentominoes. As this process would take too much time, the 35
hexominoes are provided by the teacher (Fig. 2) and the students are
asked to find out which of these hexominoes are nets of a cube. In Fig.
2 the nets are arranged in five groups of 7 nets. This suggests forming
five groups of students each of which has to make their 7 hexominoes
with paper squares and sellotape and to investigate which ones can be
folded into a cube. All five groups have to explain the reasons why some
of their hexominoes do not produce nets. So in cooperation all 11 nets
are determined through cooperation in a rigorous way.
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Figure 2.
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An alternative approach at this level would be to start from the 8
pentominoes that can be folded into an open cube and to extend them to
nets of a cube. However, as most nets can be derived from different nets
of an open cube, it may be rather complicated to eliminate congruent
nets.

In grade 5, the theme nets of a cube should be revisited. Again it
seems appropriate to provide the students first with paper squares and
sellotape and to stimulate them to find as many different nets as possi-
ble. Based on students’ findings the teacher can guide the students to a
systematic derivation of all possible nets. A natural way is to refer to the
“addition principle” of combinatorics which consists of subdividing the
set of combinatorial possibilities into subsets which are easier to manage.
In the case of nets of the cube the maximum number of squares in a row
is an appropriate criterion for a classification as is indicated briefly:
Case 1: 6 squares in a row

No cube is possible as there are overlays and two faces remain open.
Case 2: 5 squares in a row

Again no cube is possible as there is one overlay and one face re-
mains open.

Case 3: At most 4 squares in a row

Figure 3.

First it must be found out where a fifth square can be added so
that a net becomes possible. For each of the two possible positions
of the fifth square the possible positions of the sixth square have
to be determined. Some care is needed to eliminate nets that are
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congruent to nets that have been found before. Fig. 3 shows how to
proceed stepwise starting from four squares in a row. The six nets
determined in this way are drawn in bold lines.

Case 4: At most 3 squares in a row

Figure 4.

In Fig. 4 no arrows are drawn away from the four pentominoes on
the right. The reason is that the extensions of these pentominoes
would result in nets that were already found.

Case 5: At most 2 squares in a row
In this case there is essentially only one way to get a net (Fig. 5).

Figure 5.

It is obvious that this systematic derivation of all 11 nets of the cube
is not easy. However, only means are used that are accessible to students
in grade 5. With the assistance of the teacher, this learning environment
is good to handle.
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Of course it cannot be predicted how the investigation of this learn-
ing environment might develop in a certain class. Every interaction takes
place under the particular circumstances of the class. However, a teacher
who knows the mathematical background thoroughly is in a position to
deal flexibly and productively with the contributions and ideas from the
students. Based on their findings the teacher can introduce the classifi-
cation. Different groups of students can investigate the three cases. In
this way the complexity of the task is reduced to a reasonable level. The
teacher can provide support where necessary.

Comparison: In this example the empirical investigation and the di-
dactical analysis complement each other. Both are useful and instructive.
There is no question that a teacher who has more insight into the pro-
cesses linked to finding the various nets is more likely to interact with the
students than a teacher who closely adheres to the mathematical struc-
ture and hardly leaves any room to the students. On the other hand, it is
hard to imagine that a teacher who does not have a clear picture of the
mathematical structure can organize a lesson solely with the spontaneous
ideas of the students and with general pedagogical knowledge.

With respect to teaching and to teacher education, there are never-
theless significant differences between the two approaches. It is question-
able if the “high resolution” instruments that have been employed in the
empirical study by Prediger & Scherres (2012) can be communicated to
teachers and students teachers in the time that is usually available in
teacher education. It is also a question whether the results of this study
can be integrated into teaching materials that work without the interven-
tion of a teacher.

In contrast, the didactical analysis requires only a relatively small
amount of time and can be well integrated into teacher education. The
language that is used is simple and easy to understand. If the nets of
a cube are included in both mathematical and didactical courses in an
inquiry-based way there is a good chance that the metacognitive and
cooperative skills that have been found as important in the empirical
study can be acquired implicitly in these courses. This, however, is not to
devalue empirical studies. The aim of this paper is to plead for didactical
analyses as one tool of mathematics education without excluding other
tools.

4. Struture-geneti didatial analyses

The approach of “mathematics education emerging from the subject”
is based on the following assumptions:
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1. Mathematical skills and techniques are acquired best in an active
way under the guidance of mathematically experienced teachers.
This refers to both teaching and teacher education. The practice of
skills in its various forms plays a crucial role for successful learning.

2. The level of achievement that can be reached depends on the or-
ganization of teaching along fundamental mathematical ideas that
are being revisited continuously. Only in this way is it possible to
secure solid foundations for further learning and to brush up on
prior knowledge. Also, only in this way it is also possible to pro-
vide mathematical structures as building blocks for modeling real
situations. The development of curricula that are consistently and
systematically designed accordingly and combine the orientation
towards structures with the orientation towards applications is the
central task of mathematics education.

3. Authentic mathematical activities in which heuristic plays a cru-
cial role, are by their very nature social and communicative and
quite naturally include theories of teaching and learning (implicit
didactics). To make student teachers and teachers aware of these
implicit theories by referring to their own mathematical experiences
is the most direct and most efficient form of providing them with
(explicit) didactical knowledge.

Against this background, didactical analyses as employed in the ex-
amples above are playing a fundamentally important role. This research
method, which is the gold standard in mathematics education conceived
of as a “design science”, is an extension of the traditional “subject matter
didactics”. While the latter has been focused on the logical analysis of
subject matter and too much linked to the “broadcast” method of trans-
mitting knowledge from the teacher to the student, the extended method
emphasizes both the genesis of knowledge over the grades and individ-
ual learning processes. In order to emphasize this wider perspective, the
term structure-genetic didactical analysis is proposed for this extended
method.

The above examples show that structure-genetic didactical analyses
are linked to hard facts: to the mathematical practice in exploring, de-
scribing and explaining patterns on various levels, to the prerequisite
knowledge of learners, to the objectives of teaching and to the curricu-
lum. This is all empirical material. Therefore, the structure-genetic di-
dactical analysis is an empirical method. Because of its nativeness it may
well be considered as empirical research of “the first kind”. The usual
empirical studies are then empirical research of the “second kind”. The
assertion that only empirical studies of the second kind would provide
“evidence-based models” for teaching and learning is untenable.
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Structure-genetic didactic analyses are of primary importance in ma-
thematics education for the following reasons:

1. They emerge from the mathematical practice, that is on doing math-
ematics, at various levels.

2. They foster an active relationship with mathematics as a living
subject mathematics.

3. They are constructive and therefore absolutely essential for design-
ing substantial learning environments and curricula.

4. They are natural guidelines for teachers, as they unfold the implicit
theories of teaching and learning of mathematics, that is, as they
“unfreeze” the “didactical moments frozen in the subject” (Heintel,
1978: 46).

5. They are meaningful for teachers, as the feedback from the field
clearly demonstrates.

The examples in the first three sections show that structure-genetic
didactical analyses take the following points into account:

– mathematical substance and richness in activities at different levels,
– evaluation of cognitive demands on students,
– curricular matching (with respect to contents and general objec-

tives),
– coherence and consistency along the curriculum,
– curricular reach,
– potential for practicing skills (most important!),
– estimation of the expenditure of time.
Paradigms of structure-genetic didactical analyses are (Wheeler,

1963), (Freudenthal, 1983) and the developmental research initiated by
Hans Freudenthal at the IOWO in the 1970s, the developmental research
initiated by Nicolas Rouche at the CREM in Belgium, see for example
(Rouche et al., 1996), as well as the work of Heinrich Winter, the German
Freudenthal, in particular (Winter, 2015). These paradigms demonstrate
that the development of mathematics education as a research discipline
also depends on the design of conceptually founded substantial learning
environments. Achievements in this direction have to be acknowledged as
results of research.

In the context of this paper point 4 above is of particular importance
and therefore deserves some elaboration. The idea that theories of teach-
ing and learning are implicitly contained in the subject matter, and that
therefore mathematics education is not completely dependent on imports
of theories from other disciplines is by far not new. More than 100 years
ago John Dewey has formulated this idea with a clarity that leaves noth-
ing to be desired. In his paper there is a long enlightening section on the
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importance of the subject matter for teacher education (Dewey, 1977, pp.
263-264):

Scholastic knowledge is sometimes regarded as if it were some-
thing quite irrelevant to method. When this attitude is even un-
consciously assumed, method becomes an external attachment to
knowledge of subject-matter. It has to be elaborated and acquired
in relative independence from subject-matter, and then applied.

Now the body of knowledge which constitutes the subject-mat-
ter of the student teacher must, by the very nature of the case, be
organized subject-matter. It is not a separate miscellaneous heap
of scraps. Even if (as in the case of history and literature), it be not
technically termed “science,” it is none the less material which has
been subjected to method – has been selected and arranged with
reference to controlling intellectual principles There is, therefore,
method in subject-matter itself – method indeed of the highest
order which the human mind has yet evolved, scientific method.

It cannot be too strongly emphasized that this scientific method
is the method of the mind itself. The classifications, interpreta-
tions, explanations, and generalizations which make subject-matter
a branch of study do not lie externally in facts apart from mind.
They reflect the attitudes and workings of mind in its endeavor to
bring raw material of experience to a point where it at once satis-
fies and stimulates the needs of active thought. Search being, the
case, there is something wrong with the “academic” side of profes-
sional training, if by means of it the student does not constantly get
object-lessons of the finest type in the kind of mental activity which
characterizes mental growth and, hence, the educative process. (...)

Only a teacher thoroughly trained in the higher levels of in-
tellectual method and who thus has constantly in his own mind
a sense of what adequate and genuine intellectual activity means,
will be likely, in deed, not in mere word, to respect to the mental
integrity and force of children.

For teaching practice this view is of fundamental importance: The
ancient Greeks understood ‘theory as view ’. The Greek word for theory,
jewr�a, is derived from jewreØn, which means viewing, regarding, observ-
ing. In this original sense a theory provides a comprehensive view of
some area that allows for acting purposefully in this area while taking
the circumstances and contingences in this area into account. The nat-
ural theories of teaching and learning embedded in subject matter serve
exactly this purpose: they represent practicable theories for the teacher,
as they supply him or her with profound information or knowledge on
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which to base her or his actions. Whether it is to introduce children to
multiplication, or to practice long addition, or to determine the nets of
the cube; or to estimate students’ prerequisite knowledge, to activate
their thinking, to interact and communicate with them; or to interpret
students’ oral and written utterings, to assess their learning progress or
to start remedial work – all this is essentially determined by the teacher’s
“comprehensive view” of the topic to be learned. That teaching does not
proceed smoothly, that there are breaks and obstacles in the learning
processes, that students make mistakes, have difficulties in understand-
ing some points, forget what they have learned before, and so on. This
knowledge is an essential part of the implicit theories of teaching and
learning arising from an active mastery of subject matter.

What therefore counts most in teacher preparation is not an explicit
didactical component (i.e., method courses), but the mathematical com-
ponent, given that in this component mathematical activities are offered
that stimulate and provide student teachers with relevant experiences
in regard to learning processes, including learning difficulties, phases of
confusion, confidence in overcoming difficulties and so on.

Mathematical courses organized in this way also provide the most
effective theoretical basis for teaching. This is not to say that theories
imported from other disciplines are of no use. They may be. This is also
not to say that method courses are superfluous. Rather, both imported
theories and method courses can significantly enhance structure-genetic
didactical analyses. However, they should not replace them.

5. Conlusion

This paper is a plea for structure-genetic didactical analyses, the em-
pirical research of the first kind. It must not be misunderstood as a plea
against empirical studies of the second kind. On the contrary, such stud-
ies are indispensible, when new topics are to be introduced, for which no
information on students’ prerequisite knowledge is available, and when
new approaches or new means of representations are used. Examples are
the introduction of stochastics at the primary level or the use of digi-
tal media. Empirical research of the second kind is also very useful for
investigating the processes more closely that occur when a learning en-
vironment is “staged” in the classroom. Of course these studies are all
the more revealing and more meaningful, the closer they are attached to
structure-genetic analyses.

It has also to be acknowledged that a wider perspective in mathemat-
ics education including imports from related disciplines significantly con-
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tributes to a better understanding of mathematics and therefore supports
structure-genetic didactical analyses. In this sense the present author has
greatly profited from Jean Piaget’s genetic epistemology. It is no accident
that the term “genetic” is a constituent of the term “structure-genetic di-
dactical analyses”.

In a position paper on the nature of mathematics education Heinz
Griesel contended that his sense “didactical analyses” would not differ
from the “logical analyses” of mathematics (Griesel, 1974). Heinz Stein-
bring rightly rejected this narrow view (Steinbring, 2011). With structure-
genetic didactical analyses the situation is completely different. These
analyses include logical analyses, it is true, however, they involve also
knowledge about mathematical processes, about the curriculum, about
students’ prerequisite knowledge at different levels, and about the bound-
ary conditions of teaching. A mere knowledge of (elementary) mathemat-
ics is by far not sufficient. To put oneself in the place of a child who takes
his or her first steps in early mathematics, to look at the multiplication
table with the eyes of a second grader, to find the nets of a cube with the
means that are available to students at the secondary level, or to make
the concept of a limit accessible to high school students, all this requires
a special didactical approach and a special sensitivity for the genesis of
knowledge and for the mathematical practice at the level in question.

Mathematics education has certainly been enriched enormously by
contributions from other disciplines. Structure-genetic didactical analy-
ses are nevertheless the key for developing mathematics teaching and
teacher education. Without them mathematics education is in danger
to degenerate into a self-referential system. Jeremy Kilpatrick’s warning
of the “reasonable ineffectiveness of research in mathematics education”
should, thus, be taken seriously (Kilpatrick, 1981).
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Abstrat. Many teachers face difficulties with reasoning and prov-
ing, especially when they support their students’work with these
mathematical practices. I outline the background to a planned de-
velopment project in primary/lower secondary teacher education
that seeks to alleviate these difficulties. I argue that the project
needs to deal with reasoning and proving in problem contexts that
are ‘sufficiently close’ both to the challenges teachers encounter
in mathematics classrooms and to the practices of reasoning and
proving in the discipline of mathematics. This is uncontentious, as
much recent scholarship on mathematics teacher education argues
for the need to balance school mathematics and academic mathe-
matics. A more specific (and possibly more contentious) suggestion
is that, in the case of mathematical reasoning, this means balanc-
ing “proving that” and “proving why” in ways that build on the
mathematical complexities of tasks that are used in school mathe-
matics. To make my argument I draw on a conceptual framework
called Patterns of Participation (PoP). PoP views teachers’ acts
and meaning-making as their (re-)engagement in other past and
present practices in view of the interactions that unfold in the class-
room rather than as their enactment of reified knowledge and be-
liefs. I use PoP-interpretations of classroom episodes to exemplify
both the challenges teachers face when dealing with mathematical
reasoning and the tasks that may be used in mathematics teacher
education. However, my paper is not an empirical piece in the usual
sense, but an empirically informed theoretical essay that outlines
the background to the development project.
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1. Introdution

The fairy tale of Goldilocks is about a girl, who wanders in the woods
and comes to a cottage inhabited by three bears. She enters and finds
three bowls of porridge, one of which is too hot, while another is too
cold. The last one is just right, and Goldilocks eats it all.

The Goldilocks principle, i.e. the need to avoid both of two extremes
and settle for some middle ground, has been used about different situ-
ations in education and educational research. A banal example is that
tasks for students should neither be very easy nor excessively difficult, as
both situations lead to lack of involvement and intended student learning.
Katz and Raths (1986) provide a very different example and refer to the
Goldilocks principle to suggest that ‘conceptual size’ may explain why
some recommendations for teachers and teacher education are too small
or specific to be used sensibly (e.g. drill of particular teaching skills), while
others are too large to guide action. Drawing on Katz and Raths, Kagan
(1990) suggests that ‘teacher cognition’ is too comprehensive and am-
biguous construct to be valuable for understanding or supporting teacher
proficiency, while lists of behavioural objectives are unhelpful for the op-
posite reason.

In this paper I use the Goldilocks principle for yet another pur-
pose, namely to discuss how to understand and address the difficulties
many teachers have with reasoning and proving R&P in their classrooms.
Specifically, I present the background to a development project on (R&P)
in elementary mathematics teacher education. The argument is that there
is a need to balance proving why and proving that. However, I do not
merely make the possibly uncontentious point that some such balance is
needed. Rather, I use a conceptual framework called Patterns of Partici-
pation (PoP) in order to provide a (probably more contentious) argument
for why this is so and for how the balance may be conceived.

I begin with a summary of the discussion of teachers’ knowledge of
mathematics, followed by one on the recent interest in reasoning and
proving in mathematics education. I then present key elements of the
PoP framework, before referring to a study of a novice teacher, Larry,
which will function as the empirical reference point for my presentation.
However, this is not meant as an empirical paper, but as an empirically
informed theoretical essay in which I draw on the case of Larry at his
school, Mellemvang, to make my point.



The Goldiloks priniple revisited [153℄

2. Mathematis for teahing

Shulman and his colleagues pointed to a blind spot in many teacher
education programs of the 1980s, namely the lack of attention to the
contents of instruction (Grossman, Wilson, & Shulman, 1989; Shulman,
1986, 1987). They put subject matter issues back on the agenda by in-
cluding three categories of knowledge directly related to the contents
of instruction in a seven-category scheme of teacher knowledge: content
knowledge (CK), curriculum knowledge, and pedagogical content knowl-
edge (PCK). Content knowledge includes both substantive and syntactic
structures, the latter being “the ways in which truth or falsehood, valid-
ity or invalidity are established” (Shulman, 1986, p. 9). In mathematics
this is closely related to reasoning and proving. While CK in Shulman’s
framework is similar to the mathematical knowledge others have, if they
are educated in the subject, PCK is special to the teaching profession.
For the most common topics and ideas of a subject it includes

the most useful forms of representation of those ideas, the most
powerful analogies, illustrations, examples, explanations, and de-
monstrations – in a word, the ways of representing and formulat-
ing the subject that make it comprehensible to others . . . [and] the
conceptions and preconceptions that students of different ages and
backgrounds bring with them to the learning of those most fre-
quently taught topics and lessons.
. (Shulman, 1986, p. 9).

Since Shulman introduced his scheme, large numbers of studies in
mathematics education and beyond have focussed on and further devel-
oped his three content related categories (e.g. Ball, Thames, & Phelps,
2008; Kunter et al., 2013; Ma, 1999; Rowland, Turner, Thwaites, & Huck-
step, 2009). Such studies generally build on investigations of the math-
ematical challenges that prospective or practising teachers face in their
classrooms or of how deep knowledge of the mathematics taught relates
to the ways in which teachers solve tasks from school mathematics or
support student learning. In different ways they convincingly argue that
significant parts of teachers’ content preparation need to be related to the
tasks of teaching. It is, then, not only teachers’ PCK that is special to
the profession, but also parts of their CK. In what follows I refer to con-
structivist interpretations of CK and PCK as Teachers’ Mathematics or
TM-frameworks. Building their recommendations on such frameworks the
Mathematics Learning Study Committee says that while there is little evi-
dence of causal links between teachers’ knowledge of academic mathemat-
ics and their students’ mathematical learning, teacher education courses
“that reflect serious examination of the nature of the mathematics that
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teachers use in the practice of teaching do have some promise of improving
student performance” (National Research Council, 2001, p.375).

Studies of teachers’ knowledge generally focus on key content areas
such as number, algebra, or geometry. However, over the last few decades
more emphasis has been attributed to the role in school mathematics of
mathematical processes such as problem solving, communicating, mod-
elling, and reasoning (Common Core State Standards Initiative, 2010; Na-
tional Council of Teachers of Mathematics, 2000). In this paper I present
a PoP perspective on how to support prospective teachers’ proficiency
with reasoning and proving and with teaching them. Before outlining
the PoP framework, I present aspects of the literature on reasoning and
proving in school mathematics.

3. Reasoning and proving in shool mathematis

In what has become a classic in mathematics education research,
Lampert (1990) argues that school mathematics is generally not in line
with key characteristics of mathematics as a discipline. Mathematical dis-
course, she says, is “about figuring out what is true, once the members
of the discourse community agree on their definitions and assumptions”
(p. 42). In contrast, school mathematics is dominated by a communi-
cation structure in which the subject degenerates into a rule-following
activity in which truth and falsehood is determined by the teacher. This
suggests that school mathematics is generally characterised by what Harel
(2007) calls authoritative proof schemes, if proof is an issue at all, while
mathematics is dominated by deductive ones. Much work in mathematics
education, including much of Lampert’s own work (e.g. Lampert, 2001)
may be read as attempts to remedy this situation and understand and
develop participation structures that bring school mathematics more in
line with the discipline, while acknowledging the need for the students
to see the discourse as meaningful. In spite of these attempts, Lampert’s
comment about school mathematics appears worryingly valid a quarter
of a century after it was made.

The understanding of mathematical discourse in Lampert’s decep-
tively simple statement corresponds to the priorities in more recent dis-
cussions of school mathematics, especially as they relate to reasoning
and proving (Common Core State Standards Initiative, 2010; National
Council of Teachers of Mathematics, 2000). Elaborating on these latter
processes, NCTM suggests that R&P is conceptualised as a cycle of ex-
ploration, conjecture, and justification (National Council of Teachers of
Mathematics, 2008).
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The functions of proving as well as the specific character of and re-
lationships among the elements of the reasoning-and-proving cycle have
been discussed extensively (e.g. A. J. Stylianides, 2007; G. J. Stylianides,
2009). Yackel and Hanna (2003) argue that proofs are used for different
purposes and that the most powerful ones in education are explanation
and communication. This is so, as “chains of logical argument do not
function as proofs unless they serve explanatory and communicative func-
tions” (p. 228). Similarly, Hanna (2000) argues that “in the classroom the
key role of proof is the promotion of mathematical understanding” (p. 5).
And Hersh (1993) says that in mathematics proofs are to convince, but
that in mathematics education they are to explain. The joint emphasis in
these and other studies is that if compared to mathematics there is – or
should be – a shift of emphasis in mathematics education from proving
that to proving why.

Part of the background to this shift is that in schools proving often
degenerates into a ritualistic rule-following that bears little resemblance
to reasoning and proving in mathematics (Rowland, 2002). This reflects
at least in part that teachers, not least in primary and middle school, have
significant problems themselves with reasoning and proving, let alone the
difficulties they face with facilitating their students’ engagement with
these mathematical practices (Reid & Knipping, 2010). One suggestion
for how to remedy this situation is to use generic examples (Rowland,
2002) or ‘single-case key idea inductive arguments’ (Morris, 2007) to prove
why in mathematics teacher education. Rowland refers to a paradigmatic
generic example, the procedure for finding the sum of the first 100 integers
by reordering the addends as (100 + 1) + (99 + 2) + . . .+ (50 + 51). The
procedure, normally attributed to Gauss when he was still a child, is
generic in the sense that it easily extends to any other positive integer, n,
and ‘proves’ that 1+ 2+3+ . . .+n = (n+1) · n

2
. The generic argument,

then, requires one to think of the general while operating on the specific.
There is ample evidence that generic examples have educational po-

tentials for proving why, which are often left unexploited in mathematics
classrooms. I offer an example from a grade 5 classroom as an illustra-
tion. However, inspired by the same teaching-learning sequence, I also
suggest that if teachers are to capitalise on the potentials for mathemat-
ical reasoning in investigative classrooms, they need to be able to engage
in other forms of proving, also some that focus on proving that. The ex-
amples are from a study conducted some years ago with a novice teacher,
Larry (Skott, 2009). I no longer have access to the video recordings of this
teaching-learning sequence, and what follows is a reconstruction based on
transcriptions and my field notes. However, the details of the particular
interactions are somewhat inconsequential for my present purposes. What
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matters are the opportunities that arise for the students to engage in
mathematical reasoning, how the students may be supported in making
the most of these opportunities, and if and how the episodes may inspire
work with reasoning and proving in mathematics teacher education.

4. Patterns of partiipation (pop)

PoP focuses on how individuals draw dynamically on their prior ex-
periences and reengage in other past and present practices in view of the
meaning they make of the ones that unfold at the instant (Skott, 2013,
2015b, in press). This sets PoP at odds with TM frameworks, which are
generally informed by acquisitionism, that is, by a metaphor for learning
and knowing that “make[s] us think of knowledge as a kind of material, of
the human mind as a container, and of the learner as becoming an owner
of the material stored in the container” (Sfard, 2008, p. 49). According
to this view, to know is to possess reified mental constructs that are sta-
ble across time, contexts, and activity. Radical constructivism may be
regarded as a paradigmatic example of acquisitionism, as it is based on
the premise that “knowledge, no matter how it be defined, is in the heads
of persons” (von Glasersfeld, 1995, p. 1).

Over the last few decades acquisitionism has been challenged by stud-
ies that adopt more, or at least differently, social and processual perspec-
tives on human learning and knowing. One such approach is developed
by Sfard (2008). Drawing on Vygotsky (1978, 1986), she uses the term
of commognition to link communication and cognition and suggest that
thinking is nothing but internalised communication. To learn mathemat-
ics is, according to Sfard, a matter of engaging more proficiently in a
mathematical discourse characterised by its vocabulary, its visual medi-
ators, its “endorsed narratives” (i.e. results ranging from the outcomes
of arithmetic operations to theorems in advanced mathematics), and the
ways in which the narratives are substantiated.

While Sfard focuses on well-structured cultural practices, most no-
tably mathematics, studies in social practice theory investigates learning
in relation to social processes that unfold for instance among members of
Alcoholics Anonymous (Holland, Skinner, Lachicotte Jr, & Cain, 1998),
girl scouts in the US (Rogoff, 1995), tailors in Liberia (Lave & Wenger,
1991), and claims processors at an insurance company (Wenger, 1998).
Key questions in these studies are what the characteristics are of the
practices associated with the different social configurations, how such
practices evolve, and how people come to behave and see themselves (or
not) as members of the communities in question. From this perspective
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learning is not a matter of gaining ownership mental constructs or proce-
dures, but of participating differently in social practices. The contrast to
the premise of radical constructivism (cf. the quotation from Glasersfeld
above) is apparent as a community-of-practice perspective “starts with
this assumption: engagement in social practice is the fundamental pro-
cess by which we learn and so become who we are” (the introductory note
to Wenger 1998). For teachers of mathematics the question becomes how
a novices learns to participate in the social practices that emerge at the
schools where they are employed.

Symbolic interactionism also adopts a participatory approach (Blu-
mer, 1969; Mead, 1934). According to Blumer, the meanings of the objects
that humans act towards emerge in interaction, as we take the attitude of
others to ourselves. As we act, we see ourselves through the eyes of imme-
diate interlocutors and other individual or generalised others, present or
absent. For example, the teacher may adjust the acts of teaching as she
(fore)sees the lifted eyebrows or other reactions of the students; mentally
reengages in a discourse on student learning at her college; or relates to
the priorities of her colleagues as espoused in a recent staff meeting. The
meaning of the situation may change for the teacher as the classroom in-
teraction unfolds, and her contributions to the interaction are not based
on stable, mental entities (knowledge and beliefs), but on her shifting
interpretations of the situation at hand.

PoP draws on these three participatory approaches, but also differs
from each of them. It seeks to understand how teachers learn to partic-
ipate in the practices that unfold in their classrooms, but rather than
focusing exclusively on classroom processes, PoP-studies relate such par-
ticipation to shifts and changes in other practices that the teachers’ draw
on in the process. In the case of Larry at Mellemvang (see below), the
question is how Larry’s contribution to emerging classroom practices re-
lates to genuinely mathematical practices; to the reform discourse as
promoted by his teacher education programme; to discussions with his
fellow students when he was still at college; to his interactions with his
colleagues at Mellemvang; and to his tales of the educational priorities
at the school. Rather than investigating one particular practice, e.g. in a
classroom, PoP focuses on Larry and how he simultaneously engages in
a range of different practices that all play a role and mutually transform
each other in classroom interaction. In this sense and phrased in more
general terms, PoP re-centres the individual in participatory accounts of
learning (Skott, 2014).

The question of the present paper may now be rephrased as how
mathematical reasoning may become a significant, subject specific prac-
tice for novice teachers to draw on in instruction. It is not the premise
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of the paper that R&P should necessarily be omnipresent in mathemat-
ics classrooms, even though it may be regarded as the sine qua non of
mathematics. There may be many reasons, content specific ones as well
as others, why a teacher decides not to engage the students in R&P in a
specific situation. It follows that the episodes from Larry’s classroom are
not discussed in order to evaluate the teaching-learning processes from an
R&P perspective. Rather, they are meant as a backdrop to considering
a possible way ahead in mathematics teacher education, if teachers are
expected to make reasoned decisions on when and how to engage their
students in R&P and to be able to do so in situations, when this is deemed
feasible.

5. Larry at mellemvang

Larry was selected for the study because of his commitment to his
new profession and to the reform discourse as evidenced in a survey and
an interview at the time of his graduation. Especially, he emphasised the
importance of student investigations and the use of manipulatives. Six
months later I observed Larry’s teaching and conducted further inter-
views with him for 21

2
weeks at Mellemvang, the school where he got his

first teaching position. Mellemvang is a traditional private school that
emphasises student performance on standardised tests, and Larry uses
a fairly old textbook with a similar emphasis. In the first interview, i.e.
within the first week after taking up teaching at Mellemvang, Larry is
concerned with the contrast between his own educational priorities and
those of the school.

The data on Larry at Mellemvang were analysed using methods in-
spired by grounded theory (GT) (Charmaz, 2006). However, the coding
methods, the constant comparisons, and the memo writing of GT were
used without subscribing to the objectivist underpinnings often associ-
ated with them. The analysis shows that Larry and his students have
developed an atmosphere in which the students often make their own
conjectures and suggestions for possible relationships and patterns con-
cerning the mathematical contents. This is the case also in first few lessons
observed at Mellemvang, when Larry teaches a chapter in the textbook
on perfect squares and cubes. Larry supplements the tasks in the book
with the students’ use of centicubes, 1 × 1 × 1 cm cubes that are often
used to teach place value. The cubes may be assembled to make geometric
representations of squares and cubes.
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A whole lass session

In the second lesson on perfect squares, the students are to find the
perfect squares between 100 and 400. Then Larry draws a table on the
blackboard with the numbers from 1 to 14 and their squares, and he
asks the students what the relationships are between the numbers. After
some consideration, one of the boys, Steve, says: “Between each number
there is an increase of two”. Larry does not ask for an elaboration, but,
rightly I think, interprets Steve’s comment to mean that the difference
between two consecutive square numbers increases by two every time one
moves one column right in the table. Larry writes the differences under
the table (see figure 1), and asks, if the pattern continues, and if anybody
has a suggestion for why this is so. The students claim that the pattern
does continue, but unsurprisingly nobody explains why. Larry provides
an explanation, but appears to realise himself that it is unintelligible. He
does not pursue the question any further.

Figure 1. The beginning on the table on the blackboard.

In this episode Larry invites the students to engage in an activity that
resembles what Cobb and his colleagues call reflective discourse (Cobb,
Boufi, McClain, & Whitenack, 1997). Reflective discourse is a mode of
classroom communication that involves a discursive shift, which makes
a symbolisation of the results of a task the object of further investiga-
tion. In the episode above, the class uses the table as a starting point
for finding patterns in the numbers. Such shifts are recurrent in Larry’s
classroom, but in the situation above, as well as in many others, class-
room communication stops short of making further investigations of the
conjectures and of justifying them. The students, then, engage only in a
single run of the first two of the three elements of the reasoning and proof
cycle (cf. the section 3), the ones concerned with initial exploration and
making an initial conjecture.

Larry’s reaction in this episode indicates that he engages sufficiently
with mathematics in this situation to realise that Steve’s observation
does not qualify as a mathematical argument. He does not, however,
ask Steve or other students for an elaboration, and he does not come
up with an intelligible explanation himself. This is so although the ge-
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ometric representations lend themselves to
a generic argument, in this case an action
proof (Reid & Knipping, 2010), for the con-
jecture: placing representations of two con-
secutive perfect squares on top of each other
shows that the difference between them is the
sum of the base of the two squares (e.g. that
52 − 42 = 5 + 4; see fig. 2) and consequently
that the difference increases by 2, when the
base of the squares increases by 1.

Figure 2. A basis for a generic
proof: n2−(n−1)2 = n+(n−1) and
((n+1)2−n2)−(n2−(n−1)2) = 2.

Disussion of the episode

Larry was not asked to comment on the episode in an interview, and
there may be many different explanations for what happened. I do not
suggest that he should necessarily have pursued Steve’s conjecture; much
more needs to be known about the situation to warrant such a sugges-
tion. However for R&P to play a role, the teacher must from time to time
engage the students in further work on such conjectures. The discussion
below addresses the question of what it would take for a teacher to cap-
italise on the R&P potentials of the situation, if this is deemed feasible
in view of the broader context of the situation.

A TM interpretation of the situation (cf. the section 2) suggests that
Larry has insufficient content knowledge to prove the conjecture, specifi-
cally that he lacks knowledge of the syntactic structures of mathematics.
Another possibility, using the same framework, is that he knows how to
represent perfect squares with cubes, but not how to use the representa-
tions to build a generic argument about the differences between perfect
squares. In this interpretation the part of his PCK that links the contents
to teaching is limited.

These are viable understandings, but PoP offers an interpretation that
focuses less on Larry’s (lack of) knowledge and more on how he draws (or
not) on social practices beyond the classroom, as he engages in the ones
that unfold within it. From this perspective Larry does not in this situ-
ation draw on the mathematical practice of proving why, specifically on
the one of proving why by substantiating a number theoretical argument
with geometrical means. One likely reason is that his previous experi-
ences with doing so are insufficient for him to reengage in such a practice
in the classroom. Another possibility is that Larry at the instant takes
the attitude of the school in general and is primarily concerned with its
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traditional testing schemes and therefore reluctant to spend more time on
issues that are bound not to come up in the test (e.g. proving). A third
possibility is that he sees himself through the eyes of his students and
seeks to avoid the resistance that may arise, if he pushes for what from
their perspective is an unneeded, non-empirical argument.

The PoP interpretations above are somewhat speculative, as Larry
did not comment on the episode. The main point, however, is that rather
than viewing teaching as enactments of reified mental constructs (teach-
ers’ knowledge and beliefs), teachers’ contributions to classroom practice
may be viewed as linked to and transformed by their reengagement in
a range of other practices that mutually transform one another in the
process. As seen from this perspective, Larry’s involvement with the re-
form discourse and its emphasis on mathematical reasoning is challenged
and transformed, as he negotiates the significance of the more traditional
assessment strategies and educational discourses at Mellemvang.

6. R&P in mathematis teaher eduation

The episode from Larry’s classroom indicates that a teacher needs
comprehensive prior experiences with proving why, if the reflective dis-
course is to be taken beyond the mere observation that Steve makes and
focus on how the conjecture may be substantiated. Such a move may
provide the students with opportunities to develop a better understand-
ing of the contents of the claim as well as a growing sense of what a
mathematical argument is.

From a PoP perspective, however, there is more to be said about this.
To make my point I refer to the continued work on perfect squares in
Larry’s classroom. In the following lesson, the students solve tasks in the
textbook, calculations of the type ‘92 − 72’, ‘82 + 62’, and ‘122 − 62’. As
the students finish, Larry asks them to make more tasks for themselves
and for their partner at the table. Two girls, apparently seeking an easy
way out, make subtraction tasks in which the base of the subtrahend is 1:
92−12 = 80; 32−12 = 8; 72−12 = 48. Without giving it much attention,
they comment that the results are all in the 8-times table.

The two girls never raise the issue in the subsequent whole-class dis-
cussion, and I do not know, how Larry would have reacted, had he known
that they were close to conjecturing that for any odd natural number, n,
n2−1 is divisible by 8. The question I address, however, is a more general
one: what prior experiences with R&P do teachers need, if they are to
make reasoned decisions on whether to pursue such an issue and, if they
decide to do so, to engage their students in examination of the conjecture?
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From a PoP perspective, the question is what it takes to make mathe-
matical reasoning one of the possible practices that the teacher may draw
on as (s)he interacts with the students?

As mentioned before, there is little reason to expect that a high aca-
demic level of mathematics in teacher education in and by itself improves
instructional quality and student learning in schools. Merely exposing
prospective teachers to large numbers proofs that in abstract algebra or
calculus is unlikely to contribute significantly to how they handle R&P
in elementary school. The practices of a university course in pure math-
ematics are too distant from the ones related to the multidimensional
complexities of instruction for the former to significantly inform the lat-
ter. In classroom interaction teachers may seek to facilitate their students’
learning; create an atmosphere in which students feel safe; position them-
selves among their colleagues; reengage in broader educational discourses;
and much more. Doing so they take the attitude of their students, their
colleagues, the parents, and others and reengage in practices and dis-
courses linked to the respective communities. But the meaning they make
of classroom interaction is unlikely to be informed by academic mathe-
matics, even when teachers try to support their students’ learning.

The moral of this is that the practices of teacher education programs
need to fulfil two requirements. First, they are to be ‘sufficiently close’ to
school mathematics to be drawn upon as the teachers engage with their
students in their practicum and upon their graduation. This requires
that the contents and tasks prospective teachers work with relate in a
fairly immediate sense to instruction and student learning in schools.
Second, teacher education practices need to be ‘sufficiently close’ to the
academic mathematical practice of proving that, as prospective teachers
need to reengage in R&P for verification purposes, when they assess the
quality and relevance of a student’s conjecture and decide if and how to
pursue it in the classroom. If the teacher does not know how to prove
if n2 − 1 is divisible by 8, (s)he is unlikely take up the conjecture in
the classroom; and if (s)he does so anyway, the students are unlikely to
appreciate that one advantage of R&P-processes is that they provide us
with better products in the form of a relatively more secure basis for our
claims.

The proposed development project seeks to balance proving why with
proving that by using conjectures that students make in investigative
classrooms as starting points for R&P in mathematics teacher education.
This could be a conjecture like if n is odd, 8 divides n2 − 1. Prospective
teachers will be asked (1) to develop different ways to prove that conjec-
tures are right or wrong; (2) to consider if a proof also proves why the
conjecture is right, and if it does not, try to find others that do; (3) to
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consider how a teacher might react if (s)he wants to pursue an agenda
of mathematical reasoning in the situation at hand; (4) to use their own
solutions as starting points for generating new conjectures to investigate.
The research part of the project is to understand if and how the devel-
opment initiatives provide prospective teachers with a better background
for supporting their students’ activities with R&P.
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Glimpses of students' mathematial reativity,

whih ourred during a study of students' strategies

for problem solving in upper seondary mathematis

lasses

Abstrat. This article reports the first results of a research project
focusing on the development of the students’ inquiry, creativity and
intellectual independence when working in a problem solving set-
ting in upper secondary mathematics classes. Eight mathematics
teachers prepared and conducted teaching experiments for our ob-
servation of the new strategies gradually developed by the students.
The theoretical basis of the project includes works of Schoenfeld,
Polya and Cobb et al., Johan Lithner and, in the later parts, An-
drea A. diSessa. The research project, being part of the Lifelong
Learning Programme project KeyCoMath, studied the students’
strategies for problem solving in mathematics. The article presents
a didactic concept that emerged during the study: a particular as-
pect of the students’ work, which we interpret as glimpses of mathe-
matical creativity (GMC). Possible connections between GMC and
metarepresentational competence are discussed.

Introdution

This article consists of two main parts followed by a common discus-
sion and conclusion:

Part 1 contains the background and foundation of a research project,
running with the aim to develop and study teaching that encourages stu-
dents’ activity, inquiry and autonomy, and corresponding goal directed
mathematics learning. The project is part of the EU project KeyCoMath

Key words and phrases: Inquiry and creativity, problem solving, upper secondary
students’ strategies, metarepresentational competence, KeyCoMath.
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(http://www.keycomath.eu/). It started in the spring 2013 where a col-
laborative research group was formed consisting of eight mathematics
teachers from five local, upper secondary schools and one university re-
searcher in mathematics education (the author of this article). This group
had articulated certain concerns like:

i) Students are too dependent of check lists and working habits; sel-
dom are they able to ’think outside the box’

ii) Even the brightest students can reproduce, but rarely produce
mathematical thinking and

iii) Many students do not want to solve new problems or to answer
new questions.

The group had the hypothesis, that appropriate problem-solving en-
vironments could support realization of many students’ hidden potentials
for independent, mathematical thinking. Therefore, we formulated the re-
search question: “What strategies can we identify when the students work
in an inquiry based learning environment in upper secondary mathemat-
ics?” During the first year of the project, the teachers had designed and
taught sequences in their own classes of about ten lessons each, where the
students worked with problem solving. Gradually, our group’s research in-
terest concentrated on students’ modes of reasoning and, in particular,
on ideas about mathematical creativity presented by Lithner (2008).

The teachers deliberately designed sequences, which should provoke
examples of mathematical creativity. During the following years, we stud-
ied these teaching experiments and analyzed data with the aim to study
episodes of mathematical creativity. We designed and taught new teach-
ing experiments based on experiences from the first and second round.
Analysis of these latest data is still going on.

Part 2 presents one of the main results of the research project in
the form of a didactic concept, which emerged during the teaching ex-
periments: a particular aspect of the students’ work, which we inter-
pret as glimpses of mathematical creativity (GMC). An episode of GMC,
picked out from data from one of the teaching experiments, serves to
illustrate how this concept emerged from our interpretation of the stu-
dents’ activities. In this case, the GMC occurred when pairs of students
worked together in the experimental learning environment. Characteristic
of the environment was the demand that the students engaged in solving
a mathematical problem which was completely new to them, and also
that the teacher deliberately would avoid to interfere by, for example,
asking the students sub questions or structuring their actual process of
problem solving. After minutes of work and unsuccessful trials, one of
the students suddenly saw a solution in a glimpse. He explained it to the
other student who immediately accepted the solution. Subsequent data
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analysis did not reveal any connection between this solution and the two
students’ proceeding ideas or suggestions. The solution diverged from the
solution and the learning trajectory envisioned by the teacher when he
designed the teaching experiment.

Analysis and discussion of GMC and the episode take place in the
article’s common final section, based on the research project’s theoretical
framework. The main issues for discussion are: “Can we interpret GMC as
one type of Creative Mathematically founded Reasoning (CMR) (Lith-
ner 2008)?” and “What are the connections between GMC and Meta-
Representational Competence (MRC) (DiSessa 2002)?”

1. The researh projet

The research group’s work was based on Polya’s problem solving
heuristics (Polya, 1985), Alan Schoenfeld’s theories about mathematical
thinking and problem solving and Johan Lithner’s research into students’
strategies for solving tasks and problems in mathematics (Lithner 2008).
The research methodology was in line with a sociocultural perspective and
encompassed collaborative teaching experiments (Cobb 1999). Data in-
terpretation and analysis took norms and beliefs as its starting point and
included social and psychological perspectives (Yackel and Rasmussen
2002).

During the project, we combined the teachers’ designs of materials,
and their teaching experiments, with discussions and exchange of experi-
ence in a number of joint meetings. The author collected data from the
first round, in the form of video recordings, notes and materials. The data
collection took place in 2013 – 2014 under the teaching experiments and
the joint meetings. When the idea of GMC emerged during the analysis
of data, the concept of metarepresentational competence (diSessa 2002,
2004) was included as part of our theoretical framework.

1.1. Polya and Shoenfeld: how to solve it and what it takes to solve it

A central theoretical contribution of Alan Schoenfeld’s problem-sol-
ving research was his framework for analysis of mathematical problem-
solving behavior. Based on discussions in the research group of (Schoen-
feld, 2011), we decided to devide the teaching experiments into two sep-
arate parts. In every classroom experiment, the first session contained an
introduction to an inquiry, problem solving working style. The other part
was the main problem solving session. We planned to let the teaching
of mathematical problem solving include explicit use of Polya’s scheme
(Polya, 1985).
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The teachers did not in advance see this as a major change in their
classroom practices because they felt that problem-solving strategies
would also be taught normally, although implicitly. However, they had
the general impression that their students were in need for elementary
problem solving tools like, for example, those strategies based on Polya’s
scheme. The teachers wanted to enable the students to make progress on
their own hand rather than call for help as soon as they felt lost. In par-
ticular, some of the teachers also wanted to get rid of the students’ very
close use of the textbook’s list of answers to the tasks. The experiment
aimed to widen the students’ picture of mathematics in the direction
of a subject open for ideas and including discussions based on mathe-
matical knowledge and imaginations. The teachers wanted to change the
students’ beliefs about mathematics and about their own roles, and the
project intended to contribute to a change of the classroom’s norms and
practices.

The teachers felt comfortable with the preparation of materials for
both parts of the teaching experiment, supported by discussions in the
group and in smaller meetings.

1.2. Lithner: Types of reasoning for solving tasks

According to (Lithner, 2008), solving a task can be seen as carrying
out four steps:

1. A (sub) task is met, which is denoted problematic situation if it is
not obvious how to proceed.

2. A strategy choice is made. It can be supported by predictive argu-
mentation: Why will the strategy solve the task?

3. The strategy is implemented, which can be supported by verificative
argumentation: Why did the strategy solve the task?

4. A conclusion is obtained.
Further, Lithner discerns between different types of reasoning involv-

ing strategy choice and strategy implementation. The two main types of
reasoning are IR (Imitative Reasoning) and CMR (Creative Mathemati-
cally founded Reasoning). IR encompasses i) memorised reasoning where
the strategy choice is founded on recalling a complete answer and the
strategy implementation consists only of writing it down, and ii) three
subtypes of algorithmic reasoning where the strategy choice is to recall
a solution algorithm without creating a new solution; hereafter, the re-
maining parts of the strategy implementation are trivial.

In contrast, CMR fulfils all of the following criteria (Lithner, 2008,
p. 266):
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1. Novelty. A new (to the reasoner) reasoning sequence is created, or
a forgotten one is re-created.

2. Plausability. There are arguments supporting the strategy choice
and/or strategy implementation motivating why the conclusions are
true or plausible.

3. Mathematical foundation. The arguments are anchored in intrinsic
mathematical properties of the components involved in the reason-
ing.

Lithner did his studies at undergraduate level. Our group decided to
take students’ CMR as a goal for the teaching experiment. Therefore, the
data analysis concentrated on the identification of episodes of students’
creative mathematical thinking.

1.3. DiSessa: metarepresentational ompetene

Metarepresentational competence (MRC) refers to the full complex
of abilities to deal with representational issues. It includes, centrally, the
ability to design new representations, including both creating represen-
tations and judging their adequacy for particular purposes. But it also
includes understanding how presentations work, how to work presenta-
tions for different purposes and, indeed, what the purposes of represen-
tations are. Knowledge that allows students to learn new representations
quickly and the ability to explain representations and their properties
is also included (diSessa 2002). Representational literacy is important
for the students’ critical capabilities (meaning the capability of judging
the effectiveness of the design’s result, and of redesigning it) in MRC,
according to (diSessa 2002). According to diSessa (2004), MRC may ac-
count for some parts of the competence to learn new concepts and to
solve novel problems. Our group’s observations were in line with this
and gave inspiration to new inquiries. Further, diSessa (2004) suggests
that because insight and competence often involve coming up with an
appropriate representation, learning may implicate developing one’s own
personally effective representations for dealing with a conceptual domain.

Although these two studies (diSessa 2002, 2004), in contrast with our
project, aim at linking metarepresentational competence with design, and
with students’ critical capabilities, we found the concept of metarepre-
sentational competence potentially useful for analysis of the GMC’s oc-
curring from our data.
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2. Glimpses of mathematial reativity

2.1. Teahing polygonal numbers

This episode took place in a highest-level mathematics classroom with
about 22 students. The teacher gave an introduction of Polygonal num-
bers, based on his oral explanation of how the next polygonal number
emerged from the previous by expanding the polygon, and based on his
drawings on the blackboard (Figure 1).

Figure 1. The teacher’s introduction of polygonal numbers.

The students’ task was to complete a form, distributed by the teacher,
with the polygonal numbers and to express the general terms (Figure
2). After the introduction, the students started to work in pairs. The
subject polygonal numbers was new to the students and they had no
prior experiences (from the classroom, according to the teacher) with
thhis kind.

There was no restrictions on what methods they might use, but the
teacher gave no hints or sub-questions, neither. One strategy for com-
pleting the form would be to study the pattern of increase, as shown in
Figure 3.

Most of the students combined drawings with counting and, simulta-
neously, looked for patterns in the rows and/or columns containing the
numbers obtained from the drawings.
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Figure 2. The form.

Figure 3. One strategy for completing the form.
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2.2. The episode

Danielsen 18. 03. 2014 video0008, 00:02:02 – 00:04:18.

1 The two students B1 and B2 sit
and work together. They have al-
ready managed to write the first
five triangular numbers 1, 3, 6, 10
and 15 and the square numbers
1, 4, 9, 16, 25, 36, 72, 82 and 92

(Area A, Figure a and b) based
on their drawings (Area B, Fig-
ure a).
Apparently, their unarticulated
plan was to find a pattern for the
extension from triangular num-
bers to square numbers, which
they could extend to create the
pentagular numbers and, after-
wards, the succeeding polygonal
numbers.
B1: ...Then the next one is seven
squared, (writes 72), the next one
is eight squared (writes 82), the
next is nine squared (writes 92 in
Area A, Figure a and b)

Figure a

Figure b

2 B1: then we know the differ-
ence between these (points to the
square numbers, points to the
numbers 3, 5, 7, 9, 11 in area A
Figure a and b)

Their preliminary choice of a strategy
was, apparently, to read a pattern from
the increase of the square numbers. The
teacher’s introduction had lead them in
this direction (without giving any de-
tails, though)

3 B1: ... so in fact you have (writes
12, 22, 32, 42, 52, 62, 72, 82, 92,
last line in area A, Figure a and
b)

B1 rewrites the square numbers in pow-
ers of two, apparently for making it eas-
ier to read a pattern
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4 B2: But we cannot...
B1: How can we write a formula
for this?
B2: For the triangle, it is not
squared at least
B1: But the triangle is different
(...)

It becomes clear to B1 and B2 that the
pattern they look for cannot be as sim-
ple as an increase in powers

5 B1: The triangle, it is something
with its three sides, with the tri-
angle in the middle somehow...
(points to area C, Figure a)
B1: (draws a triangle, covered by
his hand on Figure a)

30 seconds silence
B1 and B2 are both starring at their
drawings.
According to my interpretation, they
reconsider the strategy and try to take
inspiration for a new strategy

6 B1: (...) one more. What is the
formula for the square?
B2: Yes I see that, the square is
okay. But..

This sounds as if B1 still considers the
old strategy of extension, and maybe he
wants to check it out again. B2 is fin-
ished with the squares and he does not
reconsider the same extension idea

7 B2: But then, the triangle, you
can somehow... (points to the
polygon in area D on his draw-
ing Figure c)

Figure c

8 B2: For example, for the pentag-
onal, then you may in a way, you
can take a formula for the trian-
gle and a formula for the square
and add them

B2 takes inspiration from his drawing
to express the pentagonal numbers by a
formula, which he can create by adding
the formulas they already know.
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9 B1: Then you can use it for all
B2: Yes you can do it with all of
them
B1: Yes, exactly. So This is the
square (points to the squares in
area B in Figure a), that is why
it becomes like this...

B1 acknowledges that the principle is
applicable for all the pentagonal num-
bers and B2 agrees.
B1 recognises the squares as parts of
the pentagonal numbers in the first few
cases in his own drawings

10 B1: For example these points
here, they have two in common...
B2: Yes yes...

They start to figure the formula out as
a sum when taking into account that
the triangle and the square has one line
in common, according to the drawing

Figure 4. The episode.

2.3. Problem solving and mathematial reativity

This episode may serve to give insight into interplay between problem
solving and mathematical creativity. The two students did neither per-
ceive, nor try to solve the problem as a routine task, but they engaged
in autonomous and independent thinking. This was what we were aiming
at in the project.

The episode was typical with regard to the lack of discussion of, or
negotiation about the students’ strategy choice (step 2 in Lithner’s task
solving, above). Instead of that, each of the two students chose his strat-
egy and ‘thought loud’ while the other commented on and gave response
to his ideas, and vice versa. None of them seemed to expect that they
would come to any agreement about the strategy. One of the students
saw a convincing solution strategy in a glimpse, shared the idea with
the other student and immediately, they both started to implement the
strategy although it represented a novel idea to them.

3. Analysis and disussion

Can we interpret GMC as one type of Creative Mathematically foun-
ded Reasoning (CMR)? The four criteria were, in italics (Lithner 2008):

1. Novelty. A new (to the reasoner) reasoning sequence is created, or
a forgotten one is re-created : In the case, B1 and B2 both expe-
rienced new insight and established a new relation between figure
and formula.
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2. Plausibility. There are arguments supporting the strategy choice and
/or strategy implementation, motivating why the conclusions are
true or plausible: Immediately after the GMC in the case, B1 and
B2 started to verify their new idea by calculations and arguments.

3. Mathematical foundation. The arguments are anchored in intrinsic
mathematical properties of the components involved in the reason-
ing: In the case, this could be an issue of discussion. The arguments
in the case were anchored in the change of representation.

4. CMR does not, as problem solving, have to be a challenge. The
definition also includes elementary reasoning. The students in the
case got new insight, which could be interpreted as a solution to a
problem as well as elementary reasoning depending on the definition
of elementary reasoning.

The criteria for CMR were fulfilled in the case, only if shifts between
different representations can be seen as part of the ‘mathematical founda-
tion’ in bullet 3. The GMC in the episode was founded on the students’
competence in shifting between the different representations (numbers,
formulas and drawings) of the polygonal numbers. Their arguments for
supporting the strategy choice (plausibility, bullet 2.) were anchored in
both students’ representational literacy, which is an aspect of metarepre-
sentational competence (MRC) as it was described above.

One of the students’ representational literacy was revealed in the
episode’s scheme row 8, where B2 talked about the formula for the tri-
angle and for the square, and about adding these two, without even to
discern between the different representations. Neither did he count the
points of each pentagonal, one after the other, nor add the corresponding
triangular numbers and square numbers. He simply handled the problem
by identifying the figures with the formulas. The other student immedi-
ately understood the idea.

This episode illustrates how the experimental lesson on polygonal
numbers, founded on interplay between different representations, could
be supportive of the students’ development of metarepresentational com-
petence as well as their creative, mathematically founded reasoning. The
student’s creative reasoning in the episode happened in a glimpse when he
caught the connection between the pentagon consisting of a triangle (with
a corresponding formula) and a square (with a corresponding formula)
on the one hand, and, on the other hand, the algebraic number of which
he wanted to have a formula. Meaning that the GMC happened in the
moment, when the student managed to see the two as different represen-
tations of the same object. A number of episodes from our data contains
examples of GMC, which happen in a similar way when a student man-
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age to establish a link between two different representations of the same
object. Further analysis of data from our group’s experiments may pro-
vide interesting insight into the connections and relations between CMR,
GMC and MRC.
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Abstrat. It is a universally accepted truth that problem solving
forms the basis for successful mathematics education. Problem solv-
ing is an indicator of the state of comprehension of the concepts
that pupils are taught. They help their solvers realize what former
knowledge is applicable in a new situation, what role this knowl-
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opment of a culture of solving mathematical problems in Czech
schools (Czech Science Foundation project P407/12/1939) focus-
ing on the use of heuristic strategies in problem solving. Heuristic
strategies have been used in Polya’s and Schoenfeld’s understand-
ing of the concept. The theoretical background of the research was
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1. Introdution

Problem solving forms the basis for successful mathematics educa-
tion. Solution of carefully selected problems helps to develop, refine and
cultivate creativity (Kopka, 2010). The situation in which mathematics
is taught as mere transfer of formulas and ready-made algorithms etc.
from the teachers to their pupils results in pupils’ believe that “an aver-
age pupil stands no chance to discover any useful idea. . . If we want to
show pupils what mathematics is, it is best to solve problems with them”.
(Kopka, 2010, p. 13) If the teacher chooses problems in whose case the
search for the appropriate algorithm is easy and also often hint at the
suitable solving procedure are explicit, then pupils instead of solving a
problem simply apply some algorithm chosen according to the signals
from the assignment or the teacher. They fail if they are to solve non-
standard problems whose assignment does not contain elements they are
used to or elements that serve as indicators for selection of the right solv-
ing strategy. They feel helpless if they face an atypical, unusual problem
or a problem set in an unknown context (it often happens when pupils
are expected to use mathematics when solving problems from everyday
life).

It is quite easy to change the plan of a sequence of lessons (the taught
concepts, their properties, organizational forms etc.). What is much more
difficult is to choose suitable problems for teaching because in doing so
both mathematical and didactical perspectives must be respected. At
the same time problem solving is an indicator of the state of comprehen-
sion of concepts that pupils are taught. They help their solvers realize
what former knowledge is applicable in the new situation, what role this
knowledge plays in it, what knowledge turns out to be useless or even er-
roneous and becomes an obstacle to further development of mathematical
knowledge and pupils’ skills. Problems should develop pupils’ intellectual
activity, simulate work of a mathematician who is facing a problem to be
solved, encourage solvers’ creativity in the solving process (Brousseau &
Novotná, 2008). If problems are to meet these criteria, it is not enough
to look for good assignments (although we cannot do without them).
It is essential to create stimulating learning environments that influence
pupils’ relationship to problem solving.

It is a generally accepted fact that the ability to solve problems de-
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velops fast if the solver gains new experience in this activity. Pupils’
performance in problem solving improves if they repeatedly meet prob-
lems of similar type in case they can make use of their past experience
(Eysenck, 1993). The case when the “quality” of solving improves when
past experience is used is called positive transfer.

Observations from Czech schools confirm that not only pupils, but
also teachers prefer problems where there are no doubts about the appro-
priate algorithm. The pupil then does not have to take the painstaking
and difficult journey to discovery of the appropriate algorithm and to
grasping of the problem. The teacher’s role is reduced to mere detection
of the places where his/her pupils made mistakes and to assessment of the
correctness of their solutions. That is why teachers often select problems
in which case the discovery of the appropriate algorithm is straightfor-
ward and provide their pupils with clues on the solving procedure. In
consequence, instead of solving a problem, pupils merely apply an algo-
rithm selected according to signals from the problem assignment. It is no
surprise that so many pupils then fail while solving non-standard prob-
lems whose assignment does not include what they are used to and what
they are usually guided by in the solving process. They feel at a loss if
assigned an atypical, unusual problem or a problem from an unknown
context. Researches confirm that these difficulties are much less frequent
in case of pupils whose teachers often assign them e.g. word problems of
non-algorithmic nature (Eisenmann, Novotná & Přibyl, 2014).

Any changes in approaches to problem solving in school practice are
conditioned by changes in teachers’ attitudes to mathematics education at
schools, see e.g. (Tichá & Hošpesová, 2006). Mathematics education based
on problem solving with no transfer of ready-made knowledge to pupils,
i.e. on creative solving, must be built on thorough teachers’ knowledge of
mathematics, on their own experience with creative approach to problem
solving, but also on easy access to information and knowledge ready to be
used in teaching. Equally important is also the so called specialized con-
tent knowledge (Ball, Thames & Phelps, 2008). This knowledge involves
identification of key mathematical concepts and of the potential this ac-
tivity bears, detection of various forms of representation of mathematical
concepts and operations, including their advantages and drawbacks.

Changes of pupils’ attitude to problem solving are one of the phenom-
ena studied in the frame of the GAČR research project Development of
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culture of problem solving in mathematics in Czech schools. The project
explored the possible ways of changing pupils’ attitudes to problem solv-
ing, of making pupils aware that mathematics problems are the means
needed for their own personal development. One of the key research ques-
tions was to what extent this approach has positive impact on develop-
ment of pupils’ understanding, on their attitudes to creative approach to
problem solving and on their reactions when meeting a modified or brand
new assignment, on their coming up with new, original solving procedures
when solving a new problem. These are perceived as indicators telling the
teacher whether a pupil understands the subject matter. In the project,
the tools for development of the pupils’ “culture of problem solving”, for
ways for changing pupils to “experts” in problems and problem solving
strategies were created.

2. Theoretial bakground and methods

The Theory of Didactical Situations in Mathematics (Brousseau, 1997)
states that for each problem there is a set of knowledge that enables its
solution. However, when solving a problem not all the needed knowledge
is necessarily available to the pupil. This means that learning is the pro-
cess of broadening the repertoire of tools available to a pupil. The role of
the teacher is to create such environment that supports this broadening.
The teaching/learning process can be characterized as a sequence of situ-
ations (natural or didactical) that result in modifications in the students’
behaviour that are typical for getting new knowledge (Brousseau, 1997).

In our research we focus on selected heuristic strategies of solving
problems. These strategies are presented later. We developed a tool for
description of a pupil’s ability to solve problems. This tool is the struc-
ture Culture of problem solving (CPS) and is described in the following
subsection.

2.1. Culture of problem solving

Culture of problem solving can be explored from three perspectives.
The first group is formed by works that focus on description of pupils’
attitude to problems and problem solving in dependence on different vari-
ables influencing these attitudes (Nesher, Hershkovitz & Novotná, 2003).
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The second group is formed by works whose goal is to bring about change
in the culture of problem solving both in case of an individual and of
groups of pupils, and build-up of pupils’ motivation to problem solving
(Bureš & Hrabáková, 2008; Bureš & Nováková, 2010; Bureš, Novotná &
Tichá, 2009; Bureš, Nováková, Novotná, 2010). The third group consists
of works focusing on complex projects in problem solving, such as clusters
of problems (Kopka, 2010; Bureš, 2010), mathematics rallies (Brousseau,
2001; Novotná, 2009; Růžičková & Novotná, 2010). In all cases, pupils
work with sets of problems, solve them individually and in groups and
then share their experience and knowledge from the solving process and
discuss it.

The approach used in the here reported research conceives CPS as
the tool for description of pupils’ solving profiles. It allows us to measure
the changes in pupils’ attitude to problem solving, in their success rate
and in the solving strategies they use. The structure of CPS is presented
in detail in (Eisenmann, Novotná & Přibyl, 2014).

CPS used in the project consists of the following four components: in-
telligence, creativity, reading with comprehension and ability to use the
existing knowledge. The first three components are measured by stan-
dard psychological tools and were assessed by a psychologist, the test for
assessment of the ability to use the existing knowledge was created by
the project solving team.

Psychological screening was conducted using the following tools.
Pupils’ intelligence was tested by the Váňa’s intelligence test (Hrabal,

1975). This test was selected because of its verified correlation with pupils’
school performance. It is particularly appropriate for the age 11 to 15,
suitable for investigating the intellectual level of whole school classes, of
the level of individuals’ cognitive abilities (esp. of the component that
conditions school success), in research situations where basic data about
pupils are collected.

Pupils’ creativity was investigated in the context of divergent think-
ing. Its level was measured using Christensen-Guilford test (Kline, 2000)
that measures four dimensions: fluency (how many relevant uses the pupil
proposes), originality (how unusual these uses are), flexibility (how many
areas the answers refer to) and elaboration (quality and number of details
in the answer).
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Pupils’ ability to read with comprehension is one of the key compe-
tences for successful problem solving. The pupils were presented with
a short text (one paragraph) which they were asked to summarize in
four lines without changing the meaning and content. The pupils’ results
are classified into the following categories: Comprehension of the mean-
ing and preservation of all details, Comprehension of the meaning and
preservation of substantial details, Grasping the meaning, more all less
preserved content without details, Incomprehension of the original text
and few details or wrong content, Incomprehension without presentation.

In the test of the ability to use the existing knowledge (AUK), pupils
were assigned four pairs of problems, called dyads (Fig. 1). The first
problem from the dyad tested the presence of certain knowledge, the
second its use, e.g. in a non-algorithmic (non-standard) context. Each
problem was evaluated by A (yes), i.e. the problem was solved, or N (no),
i.e. the problem was not solved. Each dyad was evaluated as follows: AA
(knowledge is present and used), AN (knowledge is present but not used),
NA (knowledge absent but the second problem was somehow solved) and
NN (knowledge not present and the second problem not solved). The
best result is AA, the worst AN. The total evaluation of a pupil AUK
was calculated by the formula 1 x AA + 3 x AN + 2 x NA + 2 x NN
which expresses the pupil’s success in the use of existing knowledge. It
does not evaluate the school success.

a) State the volume of a cuboid with dimensions 3 cm × 5 cm × 100
cm.

b) The cross–section of a floor timber is a rectangle with the dimensions
15 cm and 25 cm, the length of the timber is 5 meters. How much
will we pay for the timber, if 1 m3 of wood costs 7 000 CZK?

Figure 1. Example of a dyad.

The tests used for determination of all four components of pupils’
CPS were supplemented by assessments of pupils by their mathematics
teacher based on interviews of the researchers with the teachers. In the
interviews, attention was paid to surprising, unexpected pupils’ results,
both from the researchers’ point of view and from the point of view of
the teacher who had known the pupils for longer time and from various
situations.
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2.2. Heuristi strategies

The strategies we refer to as heuristics, in accordance with Polya
(2004) and Schoenfeld (1992), are those solving strategies that pupils use
to solve problems in another way than using school algorithms. Heuristic
is the typical human way of solving problems.

The importance of heuristic strategies is discussed also by Vohradský
et al. (2009). They emphasize that heuristic strategies allow the teacher
to support independent solving activity based on inquiry and discovery,
on the use of former knowledge, on posing of suitable questions etc. They
point out that these strategies motivate pupils and help them grasp the
content and master new knowledge but can never entirely replace other
methods. If heuristic strategies are to be used successfully, it is “essential
that pupils have mastered prerequisite knowledge and skills and that the
goal they want to achieve be clear to them and adequate to their abili-
ties. The main goal of heuristic strategies is development of independent,
creative thinking in pupils.” (Vohradský et al., 2009, p. 15).

The issue of the use of heuristic strategies suitable for lower and upper
secondary school mathematics teaching is discussed, e.g. in (Novotná et
al., 2013; Břehovský et al., 2013; Novotná et al., 2014a, 2014b). In (Bureš
and Nováková, 2015) the method of implementation of heuristic strategies
in class preceded by a detailed a priori analysis and followed by an a
posteriori analysis and a comparison between the teacher’s expectations
and the reality in the class is studied.

Studied heuristi strategies

In the research, the following heuristic strategies were used; each strat-
egy is illustrated by an example.

Guess – check – revise: First, based on our experience, we make
a guess about the solution to the given problem. Then we check whether
the solution meets the conditions of the assignment. The next guess is
made with respect to the previous result. We carry on in this way until
we find a solution.

Problem: Determine the two consecutive odd natural numbers so that
their product is 323.
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Solution: In Tab. 1 we gradually choose both consecutive odd numbers
and investigate their product. With respect to the final column we make
the decision whether to increase or decrease the numbers until we get the
solution.

First odd number Second odd number Their product Is the number 323?

1 3 3 No. This is (far) too little.

11 13 143 No. This is too little.

21 23 483 No. This is too much.

19 21 399 No. This is too much.
17 19 323 Yes. That’s it.

Table 1. Recording of the solution.

Answer: The required numbers are numbers 17 and 19.

Systematic experimentation: Systematic experimentation is
a strategy in which we try to find the solution to a problem using several
experiments. First we apply some algorithm that we hope will help us
solve the problem. Then we proceed in a systematic way and change the
input values of the algorithm until we find the correct solution.

Problem: A bottle with a stopper costs 110 CZK. The bottle cost
100 CZK more than the stopper. How much is the stopper?

Solution:
The stopper costs 1 CZK. Then the cost of the bottle is 101 CZK.

This does not correspond to the total sum 110 CZK.
The stopper costs 2 CZK. Then the cost of the bottle is 102 CZK.

This does not correspond to the total sum 110 CZK.
The stopper costs 3 CZK. Then the cost of the bottle is 103 CZK.

This does not correspond to the total sum 110 CZK.
The stopper costs 4 CZK. Then the cost of the bottle is 104 CZK.

This does not correspond to the total sum 110 CZK.
The stopper costs 5 CZK. Then the cost of the bottle is 105 CZK.

This is the correct solution.
Answer: The stopper costs 5 CZK.

Strategy of analogy: Analogy is a type of similitude. If we are to
solve a particular problem we find an analogical problem, i.e. a problem
that will deal with a similar problem in a similar way. If we manage to
solve this similar problem, we can then apply the method of its solution
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or its result in the solution to the original problem. Solving a problem
using analogy is very often a successful way to reaching the goal. It is
characteristic of prominent mathematicians that they see analogy where
nobody else is able to discern it. However, the method is tricky. Its use
may also lead us to wrong conclusions. Not all properties of analogical
objects must necessarily correspond. The pitfalls of the use of analogy in
teaching mathematics are pointed at e.g. by Brousseau (1997) who speaks
of “improper use of analogy”. It is also discussed in (Novotná, Eisenmann
& Přibyl, 2015).

Problem: Which fraction is greater: 125

126
or 124

125
?

Analogical problem: Which fraction is greater: 3

4
or 2

3
?

Here the answer is obvious: 3

4
> 2

3
.

Answer: 125

126
> 124

125
.

Problem reformulation: When using this strategy we reformulate
the given problem and make another one which may either be brand new,
is easier for us to solve and which solution is either directly the solution
to the original problem or facilitates its solution. A specific and very
important example of this strategy is translation of a word problem from
one language of mathematics to another. Classical geometrical problems
such as trisection of an angle were easy to solve when translated to the
language of algebra.

Problem: Which fraction is greater: 125

126
or 124

125
?

Reformulated problem: We have two identical pizzas (or two congru-
ent circles). We divide one of them into 125 identical pieces, the other to
126 identical pieces. We take away one piece from each pizza. In which
pizza will there be more left?

Solution to the reformulated problem: As we are dividing the same
object, the pieces in the second one are smaller (we divide the same area
into more identical parts). As we have taken away a smaller piece from
the second pizza, more must be left there.

Answer: 125

126
> 124

125
.

Solution drawing: When using graphical representation we usually
visualize the problem by making a drawing. We write down what is given
and often also what we want to get. The drawing we get in this way is
called an illustrative drawing as it illustrates the solved problem. Some-
times we can see the solution of the problem immediately in this drawing.
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However, in most cases we must manipulate with the drawing (e.g., we
add suitable auxiliary elements) and we solve the problem with the help
of this modified drawing. We call this drawing the solution drawing.

Problem: We have a square inscribed in a circle and this circle is
inscribed in another square. Determine which part of the larger square is
covered by the smaller square (see Fig. 2).

Solution: Using a suitable rotation of the smaller square (see Fig. 3)
and adding its diagonals enables us to solve the problem easily.

Figure 2. Picture illustrating the as-
signment. aaaaaa aaaaa aaaaa aaaaaa
aaaaa aaaa aaaaaaa aaaaa aaaaa

Figure 3. Rotation of the smaller
square and introduction of an auxil-
iary element.

Answer: The smaller square occupies one half of the larger square.
Use of graphs of functions: When there are functions in the prob-

lem assignment or when it turns out within the solving process that it is
desirable to introduce functions then it is usually good to draw graphs
of these functions. These graphs often considerably contribute to finding
the solution to the given problem.

Problem: Determine the number of roots of the equation x2 = 2x.
Solution: In Fig. 4, there are graphs of both functions x2 and 2x.

The intersection points of the two curves represent the roots of he given
equation.
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Figure 4. Graphs.

Answer: The equation has three roots.
Omitting a condition: Problem assignment often involves several

conditions. If we are not able to fulfil all these conditions when solving
the problem at once, we can ask: What is it that makes the solution of
this problem so difficult? If we manage to identify which of the initial
conditions is the difficult one, we can try to omit it. If we are then able
to solve the simplified problem, we can go back to the omitted condition
and try to finish solution of the original problem.

Problem: We have a classical chessboard with two opposite black cor-
ner squares removed (see Fig. 5). We have a sufficient number of domino
blocks. It is possible to cover all the squares of this modified chessboard
in such a way that none of the blocks sticks out of the board?

Figure 5. Chessboard with corners removed.
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Solution: Let us omit the condition of the modified chessboard and
let us work in a classical chessboard with 64 squares. It is relatively
easy to cover this chessboard with domino blacks. Now let us accept
the restriction – let us remove the opposite black corner squares from the
solved problem (covered chessboard). Obviously, if we do this, two domino
blocks are removed and two white squares remain uncovered. However,
each domino block covers one black and one white square, therefore the
remaining two fields cannot be covered by a domino block regardless of
how we move the blocks on the board.

Answer: The modified chessboard cannot be covered by domino blocks.

Working backwards: This is a frequently used strategy in mathe-
matics when we know the final state, the initial state and try to proceed
“from the end to the beginning”.The solution of the problem is based on
“turning” the found solution round. It is often used in problems from the
domain of geometric constructions.

Problem: One third of the whole number reduced by 20% equals 32.
What is the number?

Solution: Let us suppose that we know the final number and are look-
ing for the initial one. We will use the inverse operations:

– Instead of multiplying by 1

3
we will multiply by 3.

– Instead of multiplying by 4

5
(80%) we will multiply by 5

4
.

Answer: The number is 120.

Specification and generalisation: We choose a specific value or
position, or we select a specific case, in the first stage. We solve the
problem. If we can generalise the result of the problem, we formulate a
hypothesis about the result of the original problem. We either leave the
hypothesis on a plausible level, or prove it (if the solver’s abilities are
sufficient for it). If we cannot make the generalisation, we continue the
solving process by another specification.

Problem: A shopkeeper bought a book at one seventh of the original
price and sold it for three eighths of the original price. What was the
shopkeeper’s profit in percents?

Solution: Let us now specify the problem and let us presume that the
original price was e.g. 56 CZK. This means the shopkeeper bought it for
8 CZK and sold it for 21 CZK. His profit is easy to calculate: 21−8 = 13.
The profit in per cents is: 13

8
× 100 = 162.5.
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Based on our specification we got one result. If we choose several
different prices we can easily verify that the choice of the original price
has no effect on the result. This allows us to generalise this result.

Answer: The shopkeeper’s profit was 162.5%.
Generalisation and specification: We choose a more general prob-

lem that we are able to solve. Using the specification we specify the answer
for the original problem.

Problem: Which fraction is greater: 125

126
or 124

125
?

Solution: Let us generalise the problem and let us formulate the fol-
lowing hypothesis:

∀(n ∈ N)
n

n+ 1
<

n+ 1

n+ 2
.

Proof of the generalised relation:

0 < 1,

n2 + 2n+ 0 < n2 + 2n+ 1,

n(n+ 2) < (n+ 1)2,

n

n+ 1
<

n+ 1

n+ 2
.

If we specify it for value n = 124 we get the solution of the given
problem.

Answer:
125

126
>

124

125
.

Introduction of an auxiliary element : We try to transform a
given problem to a problem we have already managed to solve, or we
transform it into a simpler problem we are able to solve.

An example of an auxiliary element in geometrical problems is e.g.
introduction of straight line or line segment, but it can also be a more
complex geometrical figure. In algebra, we often introduce a new variable
(substitution).

Problem: Square CDEF is inscribed into an isosceles triangle ABC
(see Fig. 6). What is the area of the square if line segment AB is 8 cm?
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Figure 6. The given triangle.aa aa
aa aa aa aa aa aa aa

Figure 7. Introduction of an auxiliary
element.

Solution: We have to realize that triangle ABC is formed by four
identical triangles (ADE, EBF , DEF , CDF , see Fig. 7): Square CDEF
whose area is to be stated is made of triangles DEF and CDF , i.e. of
two out of the four triangles that make triangle ABC, thus the area of
square CDEF will equal one half of the area of triangle ABC.

S =
1

2

|AB|×|CE|

2
,

where CE = 4 cm, because CE and DF are diagonals of square CDEF ;
thus |CE| = |DF | and moreover DF is a line joining the mid-points of
AC and BC. Then we get |CE| = |DF | = 4 cm. After substitution S = 8
cm2.

Answer: The area of square CDEF is S = 8 cm2.

Decomposition into simpler cases: The problem is decomposed
into some simpler cases that we are able to solve. The solution to the
original problem is obtained by linking solutions to all simpler problems.

Problem: There is a parallelogram in Fig. 8. Draw two straight lines
though vertex A which divide the parallelogram into three parts of equal
area.

Figure 8. The given parallelogram. Figure 9. Creating triangles.
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Solution: Let us divide the parallelogram by a diagonal from vertex
A into two identical triangles.

Let us now consider the bottom triangle (see Fig. 9) and let us divide
it into three identical parts. The new, simpler problem now is:

Draw two straight lines through vertex A of triangle ABC which divide
the triangle into three parts of equal area.

Now it is enough to divide side BC by two points into three equal
parts. Thus we get the vertices of the three required triangles (see Fig.
10). These three triangles have one identical side and height.

Figure 10. Division of the triangle.

Let us now go back to the original problem. If we divide the other
triangle analogically, we get the following division of the parallelogram
(see Fig. 11).

Figure 11. Back to the par-
allelogram.

Figure 12. The final divi-
sion.

The parallelogram is now divided into six parts of equal area. Thus
the solution of the original problem is shown on Fig. 12.

Use of false assumption: This strategy belongs to the family of
experimental heuristic strategies. It can be well applied in problems where
the value of a number in the problem is directly proportional to the result.
The first value is selected with full awareness that the value is probably
wrong (false assumption). The correctness of the estimate is verified. The
assigned value is compared with the value calculated from the estimate
and the proportion between them is found. The result is calculated using
this finding. The mathematical background of this strategy is a linear
function.
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Problem: Perimeter of an oblong is 60 m. Determine the lengths of
its sides if you know they are in the ratio 7 : 3.

Solution: To preserve the required ratio let a = 7 m, b = 3 m. Thus
we get one half of the perimeter:

7 + 3 = 10

That is not enough. It must hold that a + b = 30. Therefore we must
enlarge the lengths of both sides. How many times? Three times.

Answer: The length of one side is 9 m and the length of the other side
is 21 m.

2.3. Methods

In (Novotná et al., 2013; Břehovský et al., 2013; Novotná et al., 2014a,
b), focus is especially on introduction of heuristic strategies suitable for
being used in primary and secondary schools when pupils solve problems
using different methods than school algorithms. However, most pupils
cannot be expected to start using these heuristic strategies unless they
are given help, either from the teacher or somebody else from outside the
school.

Within the project, two experiments were prepared and conducted – a
short-term and long-term one. In the short-term, four month experiment,
pupils were repeatedly introduced to the advantages of the use of selected
heuristic strategies in solving mathematics problems. The main goal was
to find out in case of which strategies short-term period is sufficient to
teach pupils use these heuristic strategies. Our attention was also paid to
whether the use of these strategies brings positive changes in pupils’ at-
titude to solving of mathematics problems, improves their understanding
of mathematics and develops their ability to use mathematics in different
situations. (Novotná, Eisenmann & Přibyl, 2014a)

The long-term, sixteen month experiment focused on the study which
heuristic strategies and how successfully pupils are able to learn to use
actively and whether long-term use of heuristic strategies in problem
solving affects the components of CPS.

The following two hypotheses were formulated at the beginning of the
experiments:
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1. At post-experiment pupils will be able to use some heuristic strate-
gies in problem solving actively and to a greater extent.

2. At post-experiment pupils will have markedly better results in all
components of CPS.

The organization of the teaching units in the classrooms was the same in
both experiments: The teachers assigned a problem to their pupils. They
let them work and asked the pupil who was the fastest to solve the prob-
lem correctly to explain their solution to the others. This was followed
by a discussion and explanation of the solving strategy. The teacher then
asked other successful solvers to present alternative solutions to the oth-
ers. They were always asked to justify their solving procedures. If none of
the pupils solved the problem with the intended heuristic strategy, it was
demonstrated by the teacher. In another, similar problem the teacher then
checked to what extent the teacher’s solution was actively understood.
The pupils were always encouraged to look for more ways of solving a
particular problem and to record their problem-solving procedure. Some-
times the problems were set for homework. However, the way of working
with the solutions at school was consistent.

The substantial difference between usual lessons the pupils were used
to and the teaching experiments was the way in which problems were
solved with the pupils. The teachers’ working procedure in the lessons was
the following: they presented the problem to their pupils (mostly in the
written form, on a worksheet). They let them work and after some time
(when at least one half of the pupils had solved the problem) they asked
one pupil to present the solution to the others. Then they checked whether
the rest of the class had understood the presented solution and invited
the pupils to show their own solution if it was different. If the solution
which was the aim of setting the problem did not appear among the
presented solutions, the teacher demonstrated it to the pupils. The pupils
were always encouraged to look for more ways of solving a particular
problem and to record their problem-solving procedure. In the discussions
they were asked to justify their procedures. Moreover, the teachers were
teaching their pupils to recognize the used heuristic solving strategies and
distinguish between them.

The participating teachers were provided with a sufficient number
of problems that are solved most efficiently using one of the considered
heuristic strategies. From this list of problems posed by the research team,
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the teachers were selecting the problems they found suitable for use in
their classrooms.

Short-term experiment

The short-term, four month experiment was conducted in 11 classes
(4 basic school classes with 12-year-old pupils, 4 basic school classes with
14-year-old pupils and 3 grammar school classes with 17-year-old pupils).
All the selected schools were ordinary schools without any specialization;
the classes were characterized as average or even slightly below average
by their teachers.

The participating teachers were provided with about 30 problems that
can be solved efficiently using one of heuristic strategies:

– Basic school: Analogy, Guess – check – revise and Systematic ex-
perimentation;

– Grammar school: Problem reformulation, Solution drawing and Use
of graphs of functions.

The pupils sat a written 40-minute pre-test and post-test at the beginning
and the end of the experiment (4–5 problems). The problems in both
tests were the same. The selected heuristic strategy was the most efficient
strategy of solving the problem. Calculators and computers were available
on pupils’ desks. All the pupils had basic skills in use of spreadsheets in
Excel.

Long-term experiment

The long-term, sixteen month experiment was conducted in four cla-
sses: Grammar school in Prague (20 pupils, age 16–18), Grammar school
in Hořovice (24 pupils, age 12–14), Basic school in Ústí nad Labem (18
pupils, age 14–16), Basic school in Prague (8 pupils, age 14–16).

For the experiment, 200 problems illustrating the use of individual
heuristic strategies were created.

Pre- and post-experiment tests consisted of 8 problems (a heuristic
strategy was always the most efficient solving strategy). The tests were
different for each of the classes; they respected the pupils’ age level and
knowledge. The problems in the initial and the final tests were identical.
The test problems were not presented to the pupils during the experiment,
and were not discussed even after the initial test. All the problems from
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the test were analysed and assessed in detail. Each solution was coded by
a member of the research team with respect to the following phenomena:

– way of solving the problem (straight way or heuristic strategy),

– problem-solving mode (arithmetical, algebraic, graphical),

– success rate of problem solving (successfully/unsuccessfully),

– “blank sheet” (the pupil did not even try to solve the task),

– non-evaluable response,

– misunderstanding the question.
Before the experiment started, all the participating pupils were tested
and assessed in all four components of CPS. The testing was carried out
again post experiment with the exception of Váňa’s intelligence test of
intelligence as, according to the psychologists, no significant changes in
intelligence could be expected.

Cooperation between the teachers and the research team was very in-
tensive and systematic and was going on for the period of two years. Each
of the teachers was cooperating closely with one member of the research
team. Apart from conducting the experimental teaching, the teachers also
collected pupils’ worksheets with solutions of the problems and evaluated
them. They were continuously observing the pupils and kept record of
these observations. The observations focused on changes in approaches
to problem solving and pupils’ success rate in solving problems in gen-
eral, not just in experimental problems. Regular meetings of the teachers
with the respective researchers were usually held once in two weeks. The
following issues were discussed: worksheets, individual problems, strate-
gies used and the individual pupils’ responses. The teachers also sent a
brief report by email once a week. The members of the research team had
access to the pupils’ worksheets during the whole experiment. They used
them for enriching the existing problems by new procedures that were
spontaneously developed in the lessons. Moreover, the worksheets served
as feedback with respect to the success rate of the solutions.

Once in six months the cooperating researcher came to one of the
lessons from the teaching experiment and once or twice during the whole
experiment a video recording of the teaching unit was made.

The experiment was concluded by structured interviews with the par-
ticipating teachers. Also some reactions of pupils to the use of heuristic
strategies in teaching were collected.
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3. Results and disussion

3.1. Short-term experiment

When comparing the use of heuristic strategies by pupils in the pre-
test and post-test, the following was detected:

Basic schools pupils (supported strategies Analogy, Introduction of
an auxiliary element, Guess – check – revise and Systematic experimen-
tation):

– Analogy: The four month period was too short;
– Guess – check – revise and Systematic experimentation: The growth

in the use of this strategy was 30%.
– Introduction of an auxiliary element: The growth in the use of this

strategy was 50%.
Grammar school pupils (supported strategies Problem reformulation, So-
lution drawing and Use of graphs of functions):

– Problem reformulation and Solution drawing: The four month pe-
riod was too short;

– Use of graphs of functions: The growth in the use of this strategy
was 50%.

It can be stated that even the short period of time in which heuristic
strategies were used by pupils was sufficient to bring positive changes in
pupils’ attitudes to problem solving on both types of schools. Moreover,
almost all problems solved using these solving strategies in the final test
were solved correctly.

Teachers’ observations can be summarised as follows:
– About one half of pupils stopped being afraid to solve word prob-

lems at the end of the experiment, they stopped withdrawing from
the solution in case they were not sure of how to solve them from
the very beginning.

– They learned to look for the solution, not to give up.
– Also pupils and students who used to be passive in lessons of math-

ematics started to get involved in problem solving.

3.2. Long-term experiment

Increased frequency of the used strategies was detected.
We observed a decreased frequency of unsolved problems. It can be

concluded that using suitable heuristic strategies played a role in the
pupils’ decision at least to try the solution.
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The following was detected in the use of heuristic strategies:
– Experimental strategies (Systematic experimentation, Guess –

check – revise) and Working backwards were the only chosen by
the pupils spontaneously also at the beginning of the experiment.

– The most considerable increase in the use of heuristic strategies
was in cases of Systematic experimentation, Solution drawing, Use
of graphs of functions and Introduction of an auxiliary element.

– The pupils were almost always successful when using the strategies
Systematic experimentation and Guess – check – revise.

– Introduction of an auxiliary element: about one half of the pupils
were successful in the final test.

– The (albeit sporadic) use of Analogy, Omitting a condition, Spec-
ification and generalisation and Problem reformulation in the final
tests was successful.

In the course of the experiment, the pupils showed improvement in two
of the components of CPS. All the pupils showed some but moderate im-
provement in the component Reading comprehension. The pupils from all
the classes considerably improved in the component Creativity. A more
detailed inquiry shows the highest degree of improvement in the area of
fluency and flexibility. In case of Ability to use existing knowledge no sta-
tistically significant changes could be observed. The tools used for deter-
mining pupils’ CPS do not allow us to separate the impact of the teaching
experiment and the pupils’ natural development completely; however, the
psychologists claim the growth in the studied areas was higher than can
be ascribed merely to pupils’ natural development over the period of 16
months.

The following can be concluded from structured interviews with the
teachers:

– Analogy is relatively popular among the pupils in problems that can
be reformulated using more “user-friendly” objects, e.g. numbers. It
is regarded by teachers as potentially useful for solving other than
mathematical problems.

– Working backwards can be learnt by pupils relatively easily. Clever
children select it spontaneously as the first way of solving a problem
in appropriate situations.
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– Specification and generalisation is a strategy useful not only for
solving problems in mathematics, it can be also used in other sub-
jects, e.g. physics.

– If pupils are to be able to use the strategies Problem reformulation,
Omitting a condition, Generalisation and specification and Decom-
position into simpler cases, they have to solve a relatively large
number of problems with their teacher; this was not achieved in
the experiment. As far as the strategy Introduction of an auxiliary
element is concerned, pupils also need a relatively high number of
problems to master it actively. In the teaching experiment this was
achieved in case of problems from geometry.

Pupils’ assessment of heuristic strategies can be summarised as follows:
– Systematic experimentation can be used with a great variety of

problems, its use is simple, and a computer can be used with it.
– Guess – check – revise is a fast way to finding the solution if com-

puter is not available.
– Working backwards is in some problems the easiest way to finding

the solution.
– When using the strategy Introduction of an auxiliary element in

geometry, it is helpful to make an illustrative picture and mark in
the picture as much as possible. GeoGebra helps a lot at this stage.

– When using the strategy Analogy, it works well to pose a simpler
problem with more “user-friendly” numbers. This helps the solver
realize how to solve the original problem.

The experiment also brought some results related to the use of informa-
tion technology (IT) when solving problems using heuristic strategies.
These can be summarised as follows:

– Pupils learned to use IT in the strategy Systematic experimentation
very quickly.

– They grew more confident in selecting the initial value in Guess –
check – revise sensibly already after 3 months.

– Pupils successfully applied the strategy Systematic experimentation
in solving problems whose solution through equations would have
been too difficult or impossible.
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– Problems where pupils use IT to formulate or discover a hypothesis
about a possible solution are very attractive for pupils. These in-
clude both problems solved using spreadsheets and problems from
geometry solved using dynamic geometry software.

The experiment did not have impact only on the pupils. It also had
impact on the participating teachers. They lowered their demands on
accuracy and correctness in their pupils’ communication and recording
in favour of understanding the problem solving procedures, showed more
tolerance to variety in pupils’ solutions, acknowledged a change in their
attitude to mathematics teaching to using constructivist and inquiry-
based approaches, and started to pose their own problems with the aim
of making the pupils understand the various strategies better.

4. Conluding remarks

The prediction that at post-experiment pupils would be able to use
some heuristic strategies in problem solving actively was confirmed. This
is true for the following strategies: Systematic experimentation, Introduc-
tion of an auxiliary element, Solution drawing, Use of graphs of functions,
Guess – check – revise and Working backwards.

During the experiment, the pupils improved in two components of
CPS. All the pupils showed some but moderate improvement in the com-
ponent Reading comprehension. The pupils from all the classes consid-
erably improved in the component Creativity. A more detailed inquiry
shows the highest degree of improvement in the area of fluency and flex-
ibility.

The following can be considered one of the most important results
of the project: The pupils ceased to fear problem solving and did not
put them off if they could not see the solving procedure immediately.
They stopped withdrawing from the solution in case they were not sure
of how to solve them from the very beginning. They learned to look for
the solution, not to give up. This could be observed in about one half of
the participating pupils.

As far as the impact of the experiment on the participating teachers
is concerned, it can be claimed that they show more tolerance to variety
in pupils’ solutions. They are more interested in their thinking processes
while solving problems. They admitted that their attitude to teaching
mathematics has changed to more constructivist, inquiry-based approach.
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Comprehension of elements of ombinatoris in

real-life situations among primary shool students

Abstrat. Mathematical competence has been identified at the EU
level as a key competence to be developed in primary school. Ele-
ments of combinatorics and the probability theory are a trending
topic in the current pedagogical discourse on teaching mathemat-
ics in Latvian primary schools. The expected learning outcomes
for this topic include improved and practically applicable problem-
solving abilities among students. An integrated approach to teach-
ing this topic helps students comprehend the need for mathemat-
ics in real-life situations. In this article, we analyze mathematics
curricula and discuss the problems associated with primary school
students’ understanding of how to use combinatorial elements in
different real-life situations. These considerations are examined in
the light of findings from a student and teacher opinion survey
as well as national diagnostic test results for students in third,
sixth, and ninth grades (2012-2014). Implications are drawn about
ways to improve the Latvian mathematics curriculum in grades 1-
6 and methodological recommendations are proposed for teaching
different mathematical problem-solving strategies, such as guess-
and-check, tables, and graphs.

1. Introdution

A modern, knowledge-based economy requires people with appropri-
ate skills and competencies. Mathematical competence is included among
the eight key competences in European schools (Eurydice, 2012) to be de-
veloped already at the primary level. Mathematical competence has been

Key words and phrases: competence, elements of combinatorics in primary school,
real-life situations, problem-solving strategies..
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identified at the EU level as a key competence for personal fulfillment,
active citizenship, social inclusion, and employability in the knowledge
society of the 21st century (Eurydice, 2011). Moreover, current trends
in European education involve integrated lifelong learning strategies (EU
Council conclusions, 2010) and education for sustainable development
(Salite, 2008).

Elements of combinatorics (hereinafter – EC) and the probability the-
ory are a trending topic in the current pedagogical discourse on teaching
mathematics in Latvian primary schools. At this stage of learning, math-
ematics should be tied to practical real-life issues (Sawyer, 2008). Tasks
with EC are particularly rich in practical examples (Anderson et al., 2004;
Roberts et al., 2005; Płocki, 2004). Though they may be unaware of it,
primary school students generally have multiple experiences with real-
life situations which feature EC. For instance, children use door codes,
play dice games, make arrangements and combinations, perform sampling
procedures (ordered sampling with/without replacement or non-ordered
sampling with/without replacement), and so on. Life is a matter of chance
and contingency. The key to predicting the probability of events is knowl-
edge of combinatorics and the probability theory. These considerations
underscore the importance of teaching EC and the basics of the prob-
ability theory to primary school students with due reference to real-life
situations.

This study seeks to address the problem of low academic achievement
among primary school students, which was exposed in an international
study. Thus, the results of the 5th cycle of the Program for International
Student Assessment (PISA 2012) suggest that the lowest achievement in
mathematics among Latvian students is demonstrated in topics such as
probability and statistics, with scores up to 12 points below the average
OECD result (Geske et al. 2013).

This study aims to investigate the possible ways of improving the Lat-
vian mathematics curriculum in grades 1 to 6, with an aim of preparing
students for propaedeutic learning of EC. The study explores which as-
pects of the topic “Elements of combinatorics and the probability theory”
should be emphasized in the primary school curriculum of mathemat-
ics and subsequently focused on while teaching mathematics to primary
school students.

2. Researh methodology

In order to determine the changes which are warranted in the pri-
mary school curriculum of mathematics in Latvia, an evaluative case
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study (Geske and Grinfelds, 2006) was chosen. Then, an analysis of rel-
evant documents was performed. These documents include the Latvian
National Standard for Primary Education and Mathematics Curriculum
Samples for grades 1-9 (MK, 2014). Relevant experience from other coun-
tries was appraised with regards to the topic “EC and the probability
theory” in mathematics curricula and textbooks. Since the National Cen-
tre for Education (NCE) of the Republic of Latvia administrates the
state examination system in Latvia, from the drawing up of tasks to
the descriptive analysis of national tests and exam results, we used the
statistics summarized by NCE of the results of the national diagnostic
tests in mathematics for grades 3 and 6 as well as exams for grade 9 in
years 2012-2014 regarding the students’ ability to solve tasks with EC
and the probability theory (VISC, 2012a, 2013a, 2014a). For the purpose
of the pilot study, the authors prepared questionnaires and organized a
teachers’ opinion survey as well as a University students’ survey. 130 pri-
mary school mathematics teachers from different regions of Latvia took
part in the teacher survey in March, June and August, 2015, which was
conducted at the teachers’ further education courses. The teachers’ opin-
ion survey was used to appraise their views on the primary school stu-
dents’ interest in and experience with EC in different real-life situations.
Also, the teachers’ opinions were canvassed regarding the teaching of EC
and helping students master age-appropriate problem-solving strategies
for tasks with EC. Daugavpils University (DU) students took part in a
students’ survey in February, 2015. They were students from randomly
selected groups with different specialties, from two faculties Faculty of
Social Sciences, and Faculty of Natural Sciences and Mathematics) . The
number of completed questionnaires was 74. A small random sample of
University students (from only one University) was surveyed, therefore
the results are only used to reveal the general tendencies. The DU stu-
dent survey was used to evaluate the constancy of knowledge and skills
related to EC and the probability theory a few years after the completion
of secondary education.

The research methods include:

– Comparative analysis of mathematics curricula in different coun-
tries (Latvia, Poland, Russian Federation, and USA) with a special
focus on the topic of EC and relevant skills to be acquired in grades
1-9 (with children aged 7-15);

– Analysis of Latvian student scores in national mathematics tests
(2012-2014) in grades 3, 6, and 9 with a special focus on the stu-
dents’ skills of solving tasks with EC;

– Analysis of findings from the student and teacher opinion surveys.



[208℄ Anita Sondore, Elfr	�da Krastin�a

3. Theoretial bakground

The teaching of combinatorics is closely associated with the prob-
ability theory and statistics: combinatorics is a branch of mathematics
concerning the study of finite or countable discrete structures, and enu-
merative combinatorics includes counting the structures of a given kind
and size (Anderson et al., 2004; Mencis et al., 1993; Płocki, 1992; Płocki,
2004).

Garfield et al. (1988) summarized recommendations from teachers re-
garding more efficient teaching and learning of stochastics. They begin
with emphasizing that the teachers should introduce topics through rele-
vant activities and simulations rather than abstractions. Also, the teach-
ers should convince their students that mathematics is a useful practi-
cal tool in real-life situations rather than an abstract system of symbols
and rules. Batanero et al. (1997) discuss two essential components in the
teaching and assessment of combinatorics (basic combinatorial concepts
and models) and five combinatorial procedures:

– Logical procedures: classification, systematic enumeration, inclus-
ion/exclusion principle, recurrence;

– Graphical procedures: tree diagrams, graphs;
– Numerical procedures: addition, multiplication and division princi-

ples, combinatorial and factorial numbers, Pascal’s triangle, differ-
ence equations;

– Tabular procedures: constructing a table, arrays;
– Algebraic procedures: generating functions.
According to Batanero et al. (1997), manipulative materials and tree

diagrams as well as meaningful activities linked to the probability theory
can and should be used with children in primary school, including very
young students. Combinatorial reasoning is not restricted to solving ver-
bal combination and arrangement problems; it includes a wide range of
concepts and problem-solving abilities (Batanero et al., 1997).

According to the pedagogical and psychological considerations in the
relevant EU documents of the educational policy (Cedefop, 2008; Eury-
dice 2011, 2012), the students need to be aware of the skills and compe-
tences they develop. The modern teaching and learning processes accom-
modate different approaches. The competence approach focuses on the
outcomes (Grootings and Nielsen, 2008). Learning new knowledge and
skills is best achieved with the constructivist approach (Bruner, 1977),
which requires involving the students in the discovery of new knowledge.
The integrated approach (Thomas, 2000) is used when the teacher links
didactic tasks with real-life situations. The creative solution of problems
that feature EC requires critical thinking and divergent thinking (Dewey,
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1993; Collins and Amabile, 1999; Kolb, 1984; Savery, 2006). Choosing the
appropriate approaches, methods, and strategies is an essential aspect of
a teacher’s pedagogical competence.

4. Researh results

4.1. EC in Latvian primary eduation standard and urriula

Primary school students are expected to gain problem-solving expe-
rience and learn to make sound mathematical judgments. The Latvian
National Standard for Primary Education and Mathematics Curriculum
Samples for grades 1-9 include such topics as “elements of information
processing, statistics, and the probability theory” whereby students learn
“to gather, process and analyze information; group related elements and
make sense of the concept of probability” (MK, 2014). Mathematics cur-
riculum samples for grades 1-3 suggest that the students learn such skills
as making comparisons, sorting, arranging objects according to given or
independently identified features, and reading tables, bar diagrams, and
texts. In grades 4-6, the focus shifts to elements of statistics, as students
learn to collect and record research data from surveys, sort and system-
atize spokendata, as well as create visual representations of their findings.
Meanwhile, the mathematics curriculum for grades 7-9 includes the topic
“Discrete models,” which encompasses EC and the probability theory:

– Probability, set, possible outcomes, favorable outcomes; computing
probabilities of events when sample space is finite;

– Samples with certain properties, their creation; identifying com-
binatorial properties of objects and/or the number of objects by
means of logical procedures; applying the rule of sum or addition
principle and the rule of product or multiplication principle to count
the number of different samples.

In Latvian mathematics textbooks for grades 1-3, the presence of
EC is sketchy. Textbooks for grades 4-6 also feature only random tasks
with EC. Such tasks are included in the teaching aids for mathematical
contests and competitions. They are used during extracurricular classes
with students who show a special interest in mathematics. The Latvian
mathematics curriculum could benefit from foreign experience.

4.2. EC in the primary shool mathematis urriula of different ountries

To appraise the experience of teaching and learning EC in other coun-
tries, we examined some primary school mathematics curricula from the
US, Poland, and Russia. More specifically, we focused on the topic “EC,
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the probability theory, and statistics” in terms of its contents and rele-
vant skills in grades 1 to 9 (with children aged 7 to 15). The US cur-
riculum (NCTM, 2000) introduces the topic gradually, from primary up
to secondary school. Even preschoolers are taught to estimate events in
terms of them being more or less probable (without actually calculating
the probability). In grades consistent to Latvian grades 3 to 5, the stu-
dents are taught that the probability of events is expressed in numbers.
The Russian mathematics curriculum for grades equivalent to Latvian
grades 5 to 9 (Gimadieva, 2012) features a comprehensive, detailed list
of concepts, from EC to calculating the probability of events with classic
statistical and geometric formulae. Moreover, some schools in the Russian
Federation offer an extensive course of combinatorics and the probabil-
ity theory already in grade 2, such as “Learning to solve combinatorial
problems” (Programma, 2013). Mathematics curricula in Poland (Pod-
stawa Programowa, 2013) for grades equivalent to grades 7 to 9 give an
introduction to the probability theory.

Thus, mathematics curricula in different countries are similar in as
much as the statistical elements, combinatorics, and the probability the-
ory feature in all curricula. In all four countries, the greatest focus on
combinatorics and the probability theory is for grades consistent with
Latvian grades 7-9 of primary school, although elements of statistics,
such as the reading and drawing of charts, are already incorporated in
grades 1-6. Meanwhile, the differences are related to the breadth of ap-
proach to the subject matter, the progressiveness of teaching it, and the
time when these topics are first addressed (i.e. how old the students are
when they first encounter concepts from EC and the probability the-
ory). A propaedeutic course is somewhat more developed in the USA and
in the Russian Federation. The above experience suggests that concepts
from EC and the probability theory tend to be introduced with their
appropriate usage being taught already in preschool.

4.3. Analysis of results of exerises with probability theory problems from

national tests in mathematis (2012-2014) in primary shool

To determine how the students succeed in reaching the learning out-
comes stipulated in the national primary education standard for math-
ematics, we analyzed their performance in national tests. The standard
mathematical competence of Latvian students in the National Standard
for Primary Education is stipulated in three stages of learning: grades
1-3, grades 4-6, grades 7-9 (MK, 2014). In this study, we analyze the na-
tional tests in mathematics, which feature tasks with EC. Each year, the
National Centre for Education performs a descriptive analysis of all state
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exams or test results. We relied on their digests of student achievement
in national mathematics tests for grades 3, 6, and 9 in 2012, 2013, and
2014 (VISC, 2012a; 2013a, 2014a).

In 2014, third-graders had to solve a combinatorial task for the first
time since 2012, see Exercise 9 (VISC, 2014c).

Exercise 9. There are 20 different mushrooms in a basket. The num-
ber of king boletes is the smallest. The number of russulas is greater
by 4 than that of chanterelles. How many mushrooms of each kind can
there be in the basket?

Solving this combinatorial task required the comprehension of sev-
eral concepts (highlighted in bold). In addition, the third-graders had
to write down their answers in a table, and the task had two possible
solutions. The third-graders’ academic achievement in exercise 9 (VISC,
2014a) was the following: 30.64% of students found both answers, whereas
41.52% gave only one of the two possible answers. The total success rate
in the diagnostic test for grade 3 was 77.54%, total number of students
was N = 16767 (VISC, 2014a). It follows that the students do well in
traditional tasks but struggle with non-standard ones which feature EC.
Apparently, they lack the experience of putting the solution in a table or
providing it descriptively. According to the findings from the teacher sur-
vey, not all students are able to use the guess-and-check strategy, which
would have been useful in exercise 9.

In 2012-2014, mathematic tests for grade 6 contained tasks with ele-
ments of statistics, but they will not be analyzed here.

At the end of grade 9, students have a two-part national exam in
mathematics. The first part consists of the test part with simple, brief
tasks. The second features standard tasks that resemble those found in
textbooks, but the last task in the second part requires the application
of knowledge and skills in new, non-standard situations. In 2012, the first
part of the exam for grade 9 featured a simple exercise to calculate the
probability of an event, but there were no average performance indicators
for this exercise (VISC, 2012a, 2012b). In 2013, the second part of the
exam for grade 9 had the following task (VISC, 2013b):

Exercise 4. Andrew wants to buy some ice-cream. The supermarket
sells wafer cones and a selection of banana, strawberry chocolate, caramel,
and vanilla flavors. The customer can ask for two balls of any flavor
(identical or different).

a) List all possible combinations for a wafer cone with two ice-cream
balls.

b) Calculate how many different wafer cones with two ice-cream balls
can be bought in this store. The order of balls in the cones is irrelevant.

c) What is the probability of Andrew buying a wafer cone with one
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strawberry-flavored and one banana-flavored ice-cream ball, if the balls
are randomly selected?

Figure 1. Academic achievement for exercise 4 (N = 15890) in 2013
and exercise 3 (N = 14797) in 2014 from mathematics exam in grade 9.

In 2014, exercise 3 was similar to exercise 4 from 2013, but this time
variant 3c was much more complicated than 3b (VISC, 2013b, 2014b).
The ninth-graders’ success rates in exercises 4a, 4b, and 4c (2013) and
exercises 3a, 3b, and 3c (2014) are presented in Figure 1 (VISC, 2013a,
2014a), and the total number of students was: 15 890 in 2013 and 14 797
in 2014. In 2013, 91% of students solved the simpler task (4a), while only
approximately 50% managed to solve the more complicated ones (4b and
4c). The trend continued in 2014: 80% of students solved the simpler
task (3a) with success rates dropping to 40-60% in more complex tasks
(3b and 3c). Some ninth-graders failed to grasp the method of identifying
combinations with replacement (in 2013) and without replacement (in
2014), and did not seem to comprehend the concept of probability. Some
students made calculation errors too.

4.4. Results of student survey

A test featuring seven multiple choice questions (tasks) on EC and
the probability theory and one question – to indicate familiar strategies
for solving combinatorial problems – was administered to DU students,
who had studied EC and the introduction to the probability theory in
secondary school. Their ability to solve tasks with EC was tested a few
years after graduating from school with the aim of determining the sta-
bility of their knowledge and current comprehension of EC in real-life
situations.
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Figure 2. DU students’ average performance in a test with seven questions
(N = 74).

The DU students’ average performance in this test containing seven
questions is illustrated in Figure 2. Question 2 turned out to be the most
challenging – the students were asked to state the number of the possible
three-digit combinations for a door code, with none of the digits repeating
within a single combination (i.e., all buttons need to be pressed at the
same time, so changing the order of digits does not generate a different
code). Prevalent errors appear to suggest that many respondents seem
to have failed to grasp the concept – at the same time. In question 6,
the respondents had to identify an impossible event, and most chose the
answer “In Latvia, a tulip is likely to bloom in January” rather than the
option “Selecting two arbitrary digits, their sum is 20”. The respondents
may have confused the concept of a digit and the concept of a number. On
a more positive note, an overwhelming majority (85%) gave the correct
answers to question 7, where they had to state the likelihood of winning
with a randomly selected instant lottery ticket. Also, most respondents
gave the correct answers to question 4, where the real-life situation in-
volved a combinatorics problem which could be solved by applying a
multiplication principle.

Finally, question 8 of the students’ survey had four multiple choice
options, and the respondents could have chosen more than one familiar
task-solution strategy. Out of the four specific strategies offered for solv-
ing combinatorial tasks, the students appear to be the least familiar with
the graph construction strategy.

A random sample of Daugavpils University students from two facul-
ties indicates that the students’ ability to solve simple tasks with EC a
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few years after the completion of secondary education is sufficient, al-
though some university students struggled with reading comprehension
and understanding mathematical concepts. Comparing national mathe-
matics test results (2012-2014) in primary school against findings from the
DU students’ survey confirms that both primary school students and uni-
versity students struggle with tasks that feature combinatorial problems.
It means that the teachers should focus on helping the learners master
appropriate task-solution strategies and comprehend relevant concepts.

4.5. Results of teahers' opinion survey

The teachers were asked to evaluate a list of 10 problems related to
the application of EC in real life. The most topical real-life situations
for primary school students in Latvia according to the teachers’ point of
view are: dealing with Internet security (36%); secrets of text encryption
(35%); in how many ways can a group of students (who will be appointed
to the school board) be selected from the class (19%). The less popular
questions that the students discussed with the teachers are: How many
options can there be for door codes? Why, since 2006/2007, have 8-digit
phone numbers been introduced in Latvia? What makes a password secure
for a bank operation, or computers? The teachers’ opinion survey reveals
that primary school students are interested in problems related to the
application of EC in real life.

We have adapted the above-mentioned combinatorial procedures for
lower primary school as well as survey questions to elicit the teachers’ un-
derstanding of these specific strategies for solving tasks with EC. Findings
from the teachers’ opinion survey suggest that from the four suggested
specific strategies for solving a combinatorial task (logical procedures,
constructing a table, tree diagrams, and graphs), they know the least
about the graphs strategy. Although logical procedures did not have the
lowest score (45% claim to know them), only 39% of primary school
teachers admit to have introduced the guess-and-check strategy to their
students. As mentioned above, poor knowledge of the guess-and-check
strategy and the inability to use tables may account for the fact that
only a fraction of the third-graders managed to answer question 9 from
the diagnostic test in 2014 (VISC, 2014a, 2014c). Reading comprehension
and planning the course of solving word problems were most often cited
as the reasons for poor student performance when solving mathemati-
cal word problems (85% and 60% of teachers, respectively; the survey
question What poses difficulties to students in solving mathematical word
problems?)
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A group of 77% of primary school teachers support the idea of draft-
ing a propaedeutic course on combinatorial concepts and problem-solving
strategies for students in grades 1 to 6. The teachers’ answers suggest
that they need methodological guidance on teaching EC in grades 1 to 6.
The teachers need assistance with drawing parallels with real-life situa-
tions when explaining concepts such as certain or impossible events, more
likely or less likely. Another concern is insufficient diversity in question
formulations: how many different options (variants, cases). . ., how many
choices. . ., what is the best bargain. . .? We suggest that the teachers try
to create tasks about real-life situations which require the application
of different task-solving strategies and modeling of problems. Practical
tasks in grades 1 to 3 already require the usage of the addition principle,
but the students can also learn that tasks may be solved with the help of
tree diagrams, tables, and the guess-and-check strategy.

5. Disussion and onlusion

Our lives are guided by chance as much as they follow certain laws of
logic. Therefore, humans crave understanding of the probability of events.
They want to know the odds when making choices. Teaching and learn-
ing mathematics in primary school should be relevant to the realities of
daily life. Such connections would create and reinforce interest in learning
mathematics. EC is a mathematical theory that helps address the practi-
cal issues of daily life and, thus, can help create and sustain the students’
interest in mathematics.

Solving problem tasks during regular classwork should involve the
analysis of non-standard situations which require varied solutions. Tasks
with EC for grades 1 to 6 can be considered non-standard, since they in-
vite students to examine different cases, use their imagination to visualize
the situation, and make original judgments.

The research results indicate that students have difficulties with solv-
ing combinatorial problems related to real-life situations. This is con-
firmed by the analysis of the teachers’ opinion survey and the analysis
of Latvian student scores in national mathematics tests (2012-2014) in
grades 3 and 9, especially the students’ skills regarding solving problems
with EC, which call for an initiative to improve the mathematics curric-
ula and the methodology for teaching EC in lower primary school. The
analysis of relevant experience from a number of countries exposes the
need for a propaedeutic course in Latvian primary education. This course
would gradually and systematically introduce EC to primary school stu-
dents in grades 1 to 6 and prepare them for the in-depth learning of this
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topic in grades 7 to 9 and later on in secondary school.
In view of the fact that the students’ skills of text analysis are in-

sufficient, mathematics curriculum for grades 1 to 3 and 4 to 6 (more
specifically, the sections “Mathematical analysis of natural and social
processes” and “Creating and studying mathematical models with math-
ematical methods”) need to be adjusted by adding concepts from EC and
teaching the students their proper usage in different school subjects. For
instance:

– often-rarely, always-never, sometimes, occasionally, at the same
time,

– event, likely-unlikely; certain, impossible event; more or less prob-
able event,

– mutually exclusive events,
– choice, sample, ordered-random, different types and
– chance-regularity.
Tasks which require the application of EC in real-life situations should

draw the students’ attention to different task-solving strategies, such as:
– Logical procedures: guess-and-check, predict-check-prove, modeling

with counting material.
– Graphical procedures: tree diagrams, graphs, etc.
– Tabular procedures: constructing a table.
The pedagogical modeling of real-life situations should involve didac-

tic games, board games, recreational games, experiments, etc., thereby
encouraging the students to perceive and discover regularities, general-
ize, and critically evaluate different options.
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Development of students' beliefs in mathematial

understanding in relationship to mathematis

and its appliation

Abstrat. The study investigates the development of relationships
between epistemological beliefs and the perception of mathematics
in the course of a year. The intervention consisted of three supple-
mental courses with 16 students of grade 11 and 12 in German high
schools, two devoted to coding theory and cryptography, and one
to the mathematical aspects of cosmology and particle physics.

During the first quarter of the school year, the students studied
the mathematical foundations of the course topics. In each of the
last three quarters, the students were offered a choice between sev-
eral project topics, or could find a topic themselves. They worked
on the topics alone or in pairs. At the end of each quarter, the
students had to present their results.

At the end of the second and fourth quarter, the students were
interviewed, following a semi-structured concept. The first inter-
views showed that students’ opinions about mathematical under-
standing were related to their definition of mathematics and their
choice of project topics. By dividing mathematical understanding
into active and passive categories, it became obvious that the stu-
dents who used abstract attributes defined mathematics as suit-
able for applications and chose an abstract topic for projects, and
vice versa. As it became evident in the later interviews, most stu-
dents’ understanding of mathematics changed when their definition
of mathematics and their choice of topics were completed, both
from an application and an abstract point of view during the third
and fourth quarter of the year.

Key words and phrases: mathematical understanding, abstract mathematics, ap-
plication, beliefs.
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1. Introdution

Teachers often think about their students’ understanding and motiva-
tion and how to increase them. Students are aware that they are expected
to understand mathematics, often would like to do so, and try to fulfil
expectations. The achievement of goals and expectations will affect their
perception of mathematics, their beliefs and their mathematical compe-
tences in the future. With help of our results, teachers might be able
to influence students’ relationship to mathematics and the possibility to
rectify their motivation for mathematics.

The study investigates the development of students’ epistemological
beliefs (Liu and Liu, 2011; Schommer-Aikins, et al., 2000; Maaß, 2004),
perception of mathematics and understanding, the choice of project top-
ics, the editing of projects and relationships between the aspects over a
year at school. Changes in the points mentioned above are measured in
relationship with respect to different forms of work and types of topics
for lessons and projects.

The article is based upon a study of 16 students of grade 11 in Ger-
man grammar schools taught by the author over a whole school year
in 2013/2014. In the middle and at the end of the school year semi-
structured interviews were conducted.

The aspects of the investigation mentioned above lead to the following
research questions:

1. How can we categorize students’ opinion about mathematical un-
derstanding, their definition of mathematics, their choice and work
on topics and the relationships between them?

2. How can we describe the development of these during the school
year?

3. Can the beliefs in mathematics be influenced by relationships be-
tween the aspects in rq 1?

As mentioned by Smith (2014), there already exist a lot of investi-
gations of beliefs of students in mathematics of the qualities and skills
and also whether mathematics is useful. Kloosterman, Raymond and
Emenaker (1996) describe an investigation concerning students’ beliefs
of grade 1 to 4 over three years. Furthermore results concerning students’
beliefs in learning mathematics are given by Kloosterman and Cougan
(1994), Tahir and Adu Baker (2009) and others. A study concerning rela-
tionships between epistemological beliefs is given by Stockton (2010). Up
to now no study concerning the questions 1, 2 and 3 over a whole year at
school exists.
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2. Struture of ourses

According to the Conference of the Ministers of Education of the
Länder in the Federal Republic of Germany (Kultusministerkonferenz,
2013), students can improve their ability to study with help of a “special
learning performance” (besondere Lernleistung). As response some of the
federal states built special courses in the last three years before gradu-
ation. In North Rhine-Westphalia (NRW) those project courses started
in the school year 2011/2012 and take place for a year during the last
two years before Abitur (Ministry of Education in NRW, 2010). By the
Ministry of Education in NRW, students should have the possibility to
study autonomously and cooperatively in connection with projects and
applications as well as in interdisciplinary contexts.

Because of shortage in mathematics teachers 1, a lot of schools were
unable to establish project courses. Inspired hereby the Institute of Math-
ematics and Computer Science at the University of Münster in connection
with the Institute of Education of Mathematics and Computer Science
established project courses of different topics in connection with the study
described above.

Figure 1. Phases of the course in the first quarter of the school year.

The courses were taught by the author every two weeks for two up to
three hours. During the first three months of the beginning of the school
year, the courses worked on the mathematical foundations of the course
topics: coding and cryptography or particle physics and cosmology 2. For
example the mathematical foundations of coding and cryptography are
numbers, groups, rings and fields, matrices, basics of topology, plane al-

1. These shortages appear besides mathematics in all sciences and computer sci-
ence.

2. From now on we will reduce the description to coding and cryptology to make
it clearly.
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gebraic curves, probability and different algorithms. During this phase
foundations were set during the lessons, and the students had to study
autonomously mathematical and application-oriented backgrounds in be-
tween the lessons, see the left side of figure 1. After mathematical back-
ground had been covered, the students were encouraged to look for topics
for projects about coding. In case they were unable to find topics them-
selves, the teacher suggested topics. Except one student all of them were
unable to find topics themselves and accepted suggestion of the teacher.
After the choice of topics the students started to elaborate their projects
for two months and to prepare presentations. Except one group of two
members, all of the students worked alone. Later they collected their
results alone or two by two.

After choosing their topics, the students began to process their pro-
jects in a way which might be described by cycles. In the beginning they
studied the topics autonomous. During the time of four up to six weeks
they had to study their topics. All over the time the students were offered
support by the teacher via e-mail or by e-learning and were given hints
of literature as well as copies. In the end they were expected to prepare
a presentation. Afterwards they presented the results of their work up to
then to the other students, followed a short discussion including improve-
ment suggestions by the other students and the teacher. The students
extended their projects afterwards, see figure 2.

Five months after the beginning of the school year the students pre-
sented the final results of their projects for about 15 minutes each. Be-
cause the mathematical foundations in the beginning of the school year
included the principles of all topics, the students were able to understand
the mathematical contents of the presentations.

Figure 2. Cycle of project study.
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The next phase of lessons began with an introduction to cryptography
by lectures of the teacher. Afterwards the students worked on two projects
analogous to phases described above and shown in figures 1 and 2. The
topics of projects 1, 2 and 3 (s. figure 3) might be connected, e.g. by
project 2 cryptography with elliptic curves and project 3 public key in
relationship with elliptic curves. The preparation of each project took
two months. The school year finished immediately with the presentation
of the last projects.

Figure 3. Data collection during the study.

3. Data olletion

The data collection is shown in figure 1. Over the school year all stu-
dents completed four questionnaires and gave two interviews. The ques-
tionnaires are created based on Kloosterman and Stage (1992) and Maaß
(2004) for aspects of mathematical beliefs and on Schommer-Aikins et
al. (2000) concerning epistemological beliefs. All over the year we used
the same questionnaires four times. The second questionnaires were filled
in at the end of the phase of mathematical foundations for students’
projects. The students started the projects about coding immediately
after the interviews.

After the presentation of the result of the first projects the stu-
dents filled in the next questionnaires, and immediate afterwards semi-
structured interviews were conducted.

The interviews covered knowledge and understanding of educational
contents, perception of mathematical contents, association of mathematics
and its implementation and attitudes about statements concerning math-
ematics: logical nature, empirical nature, creativity and imagination, dis-
covered vs. invented, socio-cultural aspects, scientific aspects (Liu and Liu,
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2011). The answers are categorized mathematical understanding, opinion
about mathematical background, definition of mathematics, application of
mathematics in society and meaning of mathematics for nature. More-
over the interviews contained questions concerning the contents of the
courses, where students were asked to give a description of mathematical
foundations and their own projects as well as projects by other students.

For this report we concentrate upon the aspects of students’ epistemo-
logical beliefs in mathematical understanding and students’ description
of mathematics in relationship to the choice of project topics and the
elaboration of projects.

The measurement of mathematical understanding via reflective think-
ing was taken from Stoppel (2012) and Zehavi and Mann (2005) by using
the categories assume, classify, analyse, generalize, concretize, concretize,
structure, specialize, form theory, formulate, explain, imagine, remember,
imitate, apply and execution.

At the end of the next quarter of the school year the students pre-
sented the results of their first projects about cryptography. Afterwards
they started new projects about cryptography and presented results. Im-
mediately after the presentation of results students completed the fourth
questionnaire and gave the second interviews. The questionnaires were
the same as before. The second interviews differed from the first ones
in questions about the contents of the course. Students were required to
describe contents of their own projects and projects of the other students
from all over the school year, not only about the second half.

The interviews were taken by colleagues of the author, the question-
naires were distributed and collected by himself. In order not to influ-
enced by answers of students he did not have a look at the questionnaires
and did not listen to the interviews before the end of the school year.
Otherwise it might have influenced the assessment.

The first interviews were recorded with 22 students. The second in-
terviews were conducted with only 16, as some of the students did not
appear. The interviews of the 16 students are investigated below.

4. Results

During the investigation, attention was attracted by relationships be-
tween students’ definition of mathematics and their beliefs in mathemat-
ical understanding. Also connections between the project topics and stu-
dents’ work appeared (see Stoppel and Neugebauer, 2014). By observing
students’ definitions of mathematical understanding the definitions are
divided into active concepts like explanations or applications in contrast
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to passive ones like observations or reproductions. For example an active
one given by a student is:

I understand mathematics when I am able to explain something

whereas a passive description of mathematics understanding is given by

Mathematical understanding means, that one is able to reproduce
how to achieve [a solution] and why it is this way.

Students defined mathematics in different ways which can be divided
into two different types. Some students defined mathematics as an ab-
stract science, for example

Mathematics as support for different (applied) sciences

or

Mathematics includes axioms, and they are used for conclusions.

Others defined mathematics via application as:

Mathematics is everything all over the world

or

Foundation of jobs.

The investigation of the students’ choice of project topics and their
elaboration lead to division into the two categories abstract mathematical
like

mathematical backgrounds of the usage of elliptic curves and appli-
cations like the usage of RSA 3 focused on applications (not math-
ematical aspects like the algorithms).

Table 1 shows that 6 of the 16 students defined mathematics via ap-
plication and described mathematical understanding under the usage of
active reflective thinking, whereas another 7 students defined mathemat-
ics as abstract and chose passive reflective thinking to describe math-
ematical understanding. Only the remaining 3 students used different
types of descriptions. Furthermore all 6 students who defined mathe-
matics in association with application and used active reflective thinking
for the description of mathematical understanding chose abstract topics
for their coding project. They will be denoted as type 1. Every student
who defined mathematics as abstract and described mathematical under-
standing by passive reflective thinking elaborated applications in his/her
project. These students will be denoted as type 2. All cases are presented
in table 1.

3. Initials of authors Rivert, Shamir and Adleman.
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Definition of mathematics Reflective thinking Project topics Frequency
application active abstract 6 (type 1)
abstract passive application 7 (type 2)
application passive application 1
abstract active abstract 1
abstract active application 1

Table 1. Results of the first interviews.

For example keywords of a student are given by [S1]:
– Passive reflective thinking: think (yourself);
– Abstract definition of mathematics: local thinking;
– Application as type of project: AES-encryption 4.
The distribution is made visible in figure 4, showing that the types 1

and 2 are opposed as they differ in all three categories.

Figure 4. Illustration of frequencies of (definition, reflective thinking,
project topics), first interviews.

Changes in relationships between students’ definition of mathematics,
their opinion about mathematical understanding and the type of project
topics appeared in the second interviews. Seven students defined mathe-
matics both in an abstract way and via application. All these 7 students
described mathematical understanding by active reflective thinking. Fur-
thermore all of them developed their projects in an abstract way and
took a close and exhaustive look at applications. Only one student who
defined mathematics in both ways and processed his project topics in an
abstract and an application-oriented way described mathematical under-
standing with passive reflective thinking. All results are visible in table 2
and figure 5.

4. Advanced encryption standard.
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Definition of mathematics Reflective thinking Project topics Frequency
application active abstract 2
abstract passive application 0
application passive application 0
abstract active abstract 2
abstract active application 0
both passive both 1
both active both 7

application active application 1
application passive abstract 1
abstract both abstract 1
abstract passive abstract 1

Table 2. Results of the second interviews.

For example student [S1] changed to descriptions:
– Active reflective thinking: explain, reason;
– Abstract and active definition of mathematics: local thinking and

algorithm;
– Types of project: application of RSA theory of public key.

Figure 5. Illustration of frequencies of (definition, reflective thinking, project top-
ics), second interviews.

Answers to the research questions are implied by the results. First the
opinions of students about mathematical understanding were related to
their definition of mathematics and their choice of project topics. In stu-
dents’ perception of these connections primarily the two different types
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active and passive appeared. For their first projects, students who used
active attributes defined mathematics as suitable for the usage of appli-
cations and chose an abstract topic for projects. On the other hand, the
students who used passive attributes defined mathematics in an abstract
way and chose applications for projects. During the third and fourth quar-
ter of the year, most students’ mathematics understanding changed when
their definition of mathematics and their choice of topics were regarded
both from an application and an abstract point of view.

5. Conlusions

Students’ interest in mathematics is influenced by their beliefs of
abstract mathematics, its application, mathematical understanding and
connections between them. Some opposite types appear between the per-
ception of mathematics and application of mathematics.

A big potential for learning in project work is given by the freedom
to elaborate on mathematical projects. The hidden interests of students
become visible by connections between their opinion about mathematics,
application of mathematics and mathematical understanding.

Based on freedom in processes of projects over a longer period, the
opinions of students about mathematics and results of their projects ex-
pand to abstract mathematics and application, at the same time when
their level of activity was raised. This is reflected by the changes in types
of project topics and the results of their autonomous editing.
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Abstrat. As part of a project, financed by research funding (Project
R1700603 Rozpoznawanie i wspomaganie rozwoju uzdolnień do
uczenia się matematyki u starszych przedszkolaków i małych ucz-
niów [Assessing and nurturing the development of an aptitude for
learning mathematics in older kindergartners and primary school
students ]), I have created diagnostic tools for the recognition of the
mathematics aptitude of children. I have also assessed the number
of mathematically gifted children as well as the highly gifted. I have
determined the attributes of their mind and gathered evidence that
the aptitude for mathematics declines if it is not nurtured and de-
veloped at the right time. I have also taken action in order to help
properly accommodate gifted children at school. I will present ev-
erything synthetically, as I have to, in the form of the following
sections:

X The research that prompted the change of heart regarding
the existence of an aptitude for mathematics in children.

Key words and phrases: mathematically gifted children; existence of an aptitude
for mathematics in children; mental capabilities; mathematics aptitude; older kinder-
gartners; primary school students; evelopment of mathematics ap- titude; children
mathematic.

AMS (2000) Subject Classification: 97C30.
As part of a project, financed by research funding , I have created diagnostic

tools for the recognition of the mathematics aptitude of children. I have also assessed
the number of mathematically gifted children as well as the highly gifted. I have
determined the attributes of their mind and gathered evidence that the aptitude for
mathematics declines if it is not nurtured and developed at the right time. I have
also taken action in order to help properly accommodate gifted children at school. I
will present everything synthetically, as I have to. I will include all the information
regarding further reading in the footnotes.
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X The mental attributes of mathematically gifted children and
the presentation of the results of the study regarding the
existence of mathematics aptitude in children.

X The critical (sensitive) periods of the development of math-
ematics aptitude in older kindergartners and primary school
students. Why aptitude wastes away when not nurtured and
developed during critical periods.

X Why teachers are wrong in their assessment of the mental
capabilities of mathematically gifted students.

X Arguments for the recognition of mathematics aptitude in
older kindergartners and a short description of a teacher di-
agnosis for the recognition of mathematics aptitude in older
kindergartners and young primary school students.

X What has already been done to ensure a better fate of math-
ematically gifted children and what is the result.

It is commonly assumed that an aptitude for mathematics is visible
specifically in older students, when they find a practical use of their ad-
vanced knowledge of mathematics. If they manage to attain high scores
in mathematics contests, it is obvious that they are highly gifted. It is
also assumed that a mathematics aptitude is a rarity, which is why no
one is surprised when e.g. only two or three students per form seem to
have it. In consequence, it is incorrectly assumed that failures in learning
mathematics are caused by the lack of a mathematics aptitude 2.

It is also assumed that children cannot present their mathematics
aptitude, as they don’t know enough maths. When older kindergartners
and generally primary school students seem to acquire maths skills sur-

1. I am making use of fragments of the work O dzieciach matematycznie uzdol-
nionych. Książka dla rodziców i nauczycieli [Mathematically gifted children. A book
for children and parents] (ed. E. Gruszczyk-Kolczyńska, Wydawnictwo Nowa Era,
Warszawa 2012, chapters from first and second parts), as well as the article Dzieci
uzdolnione matematycznie – mity i realia [Mathematically gifted children – myths and
reality ], parts 1 and 2, “Matematyka. Czasopismo dla nauczycieli” [“Mathematics. A
journal for teachers”] 2011, issues 8 and 9.

2. This is a comfortable assumption for everyone. Teachers do not even try to teach
better, because“everyone in the class is an artistic mind”. The students feel excused for
not trying harder, because they think aptitude is intrinsic and hereditary. The parents
do not feel guilty for not making sure their children do their homework. They say
that the child “took after his grandfather, who was also inept at maths”, etc. I have
described the actual reasons for school failures in the book Dzieci ze specyficznymi trud-
nościami w nauce matematyki. Przyczyny, diagnoza, zajęcia korekcyjno-wyrównawcze
[Children with specific issues in learning mathematics. Reasons, diagnosis, remediation
activities], WSiP, Warsaw 1992 incl. next issues, part one.
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prisingly quickly, the parents and teachers correlate this to their general
aptitude and intelligence. This is probably why recognising the mathe-
matics aptitude of children was not pursued.

About the research that prompted the change of heart regarding
the existence of an aptitude for mathematics in children

In the 1960s, A. W. Krutetsky 3 – a respected figure in the world of
mathematics aptitude – said that the makings of a maths aptitude can
be perceived in children. According to Krutetsky, if they are properly
fostered, they attain the form described by him in the model of mathe-
matics aptitude in older students. Though it is unclear whether he meant
kindergartners or young primary school students.

Almost 30 years later, while assessing the educational effectiveness
of the Dziecięca matematyka [Children’s mathematics] program, I have
observed that more than half of the children taking part in the program
perform noticeably well in mathematics education at school 4. These chil-
dren solved maths problems with pleasure, using astonishing maths skills.
They also discerned maths problems while e.g. doing housework, taking
a walk, doing shopping. Their thoughts concerned numbers and measure-
ment. They wanted to measure, calculate, determine proportions, etc.
Such an orientation of the mind was determined by Krutetsky to be one
of the more important indicators of an aptitude in mathematics.

This is why, while presenting the results of this study, I have for-
mulated a thesis statement, which says that more than half of the over-
all number of children manifest their mathematics aptitude, as long as

3. A.W. Krutetsky Psikhologiia matematicheskikh sposobnostei shkol’nikov [Psy-
chology of mathematical abilities of students], Prosveshchenie, Moscow 1968. In the
80s, I was fortunate enough to be able to attend a few of Krutetsky’s lectures, I was
also able to have a conversation with him, during which he gave me the book used
here. An in-depth perusal of the book has induced me to research the mathematics
aptitude of children.

4. This program was carried out in selected kindergartens. When the children from
the program enrolled in primary school and finished third grade, I analysed their school
performance. The teachers and parents of each of the kids answered these questions:
a) How is the child doing at school? What are their achievements and failures? b) Is
solving maths tasks visibly enjoyable for the child, and is it easier for him to do so
than for his peers? c) In real-life situations, does the child express interest in doing
calculations and measurements without adult encouragement? The outcome was that
circa 92% of the children in question were successful at school. The teachers were clear
that those were their best learners to date. The remaining children (about 8%) had
trouble with reading and writing (though they did better at maths). From what was
gathered from the parents, about 58% of the kids had a mathematically-focused mind,
which is an important indicator of a mathematics aptitude.
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proper conditions are maintained at kindergarten and at school. This
statement was not taken seriously, as it contradicts the idea that only
older children can manifest their mathematics aptitude and that it is a
very rare occurrence. In order to prove my statement, I have once more
began studying mathematically gifted children a few years later. In 2010,
I have finished carrying out a project called Rozpoznawanie i wspomaganie
rozwoju uzdolnień do uczenia się matematyki u starszych przedszkolaków
i małych uczniów [Recognising and encouraging the development of apti-
tude for learning mathematics in older kindergartners and primary school
students] 5. I will begin the presentation of the results of the study by de-
scribing the mental attributes of mathematically gifted children.

The mental attributes of mathematically gifted children

By analyzing all math-related activities of children at home, at kinder-
garten, and at school, I have determined that many of the children exhibit
the attributes of mind listed by W. A. Krutetsky in the model of mathe-
matics aptitude 6 in older learners. By my findings, mathematically gifted
children stand out among their peers due to:

X The ease of learning maths skills and understanding anything re-
garding calculating and measuring 7;

X Achieving the concrete operation stage (in the J. Piaget sense)
earlier than others, exhibiting more precise reasoning 8;

5. A substantial report regarding this study entitled Wiadomości i umiejętności
oraz zarysowujące się uzdolnienia matematyczne starszych przedszkolaków i małych
uczniów. Podręcznik, narzędzia diagnostyczne oraz wskazówki do wspomagania rozwoju
umysłowego i edukacji uzdolnionych dzieci [Information about, and the abilities, and
the outlines of the mathematics aptitude of older kindergartners and primary school
students. Textbook, diagnostic tools, and tips for the encouragment of mental develop-
ment and the education of gifted children] (ed. E. Gruszczyk-Kolczyńska) is located in
the Academy of Special Education in Warsaw.

6. Full description of the attributes available in W. A. Krutetsky’s aforementioned
Psikhologiia matematicheskikh sposobnostei shkol’nikov, pp. 201-245. He distinguishes
mental attributes which are the basis of the development of any kind of aptitude, as
well as the mental attributes of mathematically gifted older students. The description
of the former includes the process of solving maths tasks, as this is how the attributes
manifest.

7. For instance, to assess that the result of an equation containing solely addition
does not rely on the order of operations, the children only need to solve only a few
tasks, whereas the non-gifted children will understand the concept after solving several
tasks.

8. Gifted four- and five-year-olds make use of operational thinking on the concrete
level in a scope just wide enough to develop number concepts and calculating skills.
What is more, most children arrive at this level of competence two years later.
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X Easily making sense of situations which require calculating, order-
ing, determining dependencies, etc. Due to this, they easily perform
all the tasks necessary to achieve their goal, spotting errors and
properly reacting to absurdities 9;

X Focusing their attention on sentences for longer periods of time
without showing fatigue. Although they will stop upon noticing
any sign of ignoring their efforts 10;

X Doing more attempts at solving tasks if previous attempts were
deemed ineffective 11;

X A creative mindset regarding maths activity. The children look for
situations in which they need to make use of calculating, measuring,
and organising their environment on their own.

This is why these children know more and have more maths skills
than it would seem, given their age and their course of education. It also
seems as if they see their environment with maths in mind and seek to
mathematise all that surrounds them – they constantly feel the need to
count, measure, compare sizes, determine proportions, etc.

Based on these findings, it seems Krutetsky was too cautious claim-
ing that there are only basic components of the mathematics aptitude
of children. It is possible that he did not have many opportunities to
observe and analyse the functioning of older kindergartners and primary
school students in situations where calculating, measurements, etc., were
essential to successfully complete a task.

About the creation of tools used for the recognition
of the mathematics aptitude of children 12

In order to begin research on the existence of the mathematics ap-
titude of children, diagnostic tools needed to be created, as none of the

9. This can be observed in situations where the children are to solve tasks which
were poorly phrased on purpose, or are observing adults who intentionally make mis-
takes while solving maths tasks.

10. While verifying the diagnostic value of the tests used for the recognition of
mathematics aptitude, hundreds of tasks had to be solved with the children. Gifted
children would do tasks for an hour or more, without showing any signs of boredom
or fatigue. But as soon as they noticed any sign of impatience, lack of attention, etc.,
they refused to continue.

11. If the chosen way of solving a task does lead to any results, they change their
way of thinking and try to do it differently, which is often far from the way tasks are
solved at school.

12. In-depth information is available in the aforementioned book called O dzieci-
ach matematycznie uzdolnionych. . . , as well as the cited report from the research
Wiadomości i umiejętności oraz zarysowujące się uzdolnienia matematyczne starszych
przedszkolaków i małych uczniów. . .
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existing tools provided for the mental attributes described earlier. I began
by analysing what the children were learning at home, at kindergarten,
and at school. Based on this, I have delineated 13 areas, which were:
spatial awareness, classifications, counting, addition and subtraction, the
value of money (buying and selling), measuring length, fluids, mass, and
time, geometric intuition, equalities and inequalities, tasks with windows,
and intentionally ill-constructed tasks.

For every area, series of diagnostic tasks were constructed, ranging
from very easy to hard. Every series of diagnostic tasks was adjusted
until the employed statistical procedure showed that the ways of solving
the tasks differentiated well enough. That is, older children exhibited
higher competence levels than younger children (which is an indicator of
proper mental development as well as the sequencing of task difficulty).

Every task could be completed by the child on one of five levels, from
refusing to complete the task to solving it on a level demonstrating a
mathematics aptitude (manifesting the aforementioned mental abilities).
The research was continued to be carried out until the merit and statis-
tical analyses of the kids’ behaviour allowed for an assessment of their
competences on a five-grade scale. 124 older kindergartners and primary
school students took part in this laborious study at first. The number
then rose to 487 13.

It is worth mentioning that diagnostic tasks differ from conventional
tests 14 in such a way that the child is able to complete the tasks on
different levels, on par with knowledge and abilities. A good-bad grading
system is not used, as every task has specific levels of completion. The
researcher observes and analyses the behaviour of the child and chooses
a level appropriate for the child. It is then compared to the age and

13. In order to observe the individual differences in the competences of the children,
I have not singled out any individual students from all of the kindergartens, as well as
pre-first grade and first grade classes taking part in the study. From my experience,
if a teacher is asked to single out a number of children to take part in a study, they
will choose gifted children. Even when they are asked to pick weaker students. What’s
more, in order to carry out research, it is necessary to obtain the permission of: the
principal of the educational institution, the teachers of the children in question, and all
of the parents of the children as well as the kids themselves, one by one. It seems just,
even though it very much complicates carrying out research programs and reduces the
number of children eligible to take part.

14. More information regarding the differences can be found in the E. Gruszczyk-
Kolczyńska & E. Zielińska book Nauczycielska diagnoza edukacji matematycznej dzieci.
Metody, interpretacje i wnioski [A teacher’s diagnosis of the mathematics education of
children. Methods, interpretation, and conclusions], Wydawnictwo Nowa Era, Warsaw
2013, chapter 1.
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the educational situation of the child, which is graded according to the
grading guide.

If the diagnostic tasks form a series, the learning phase can be in-
corporated, e.g. guiding the child step by step towards solving the task.
Creating a similar task can also be proposed to the child, as well as pre-
senting ill-constructed tasks to see if the child will notice. I have made
use of these suggestions while creating the diagnostic tasks for each of
the aforementioned areas of mathematical activity. The tasks were pre-
sented to the child in such a way that they could refuse to solve them,
make use of the learning phase (in various ways), solve the tasks on their
own, create similar tasks for the researcher, and then observe and check
whether the researcher is making mistakes while solving the tasks. This
way, the child had the opportunity to exhibit each of the aforementioned
mental attributes of the mathematically gifted.

This stage of the study resulted in the formulation of diagnostic tools
for the recognition of mathematics aptitude in older kindergartners and
primary school students 15. The next step was estimating the number of
mathematically gifted children. A number of 182 older kindergartners and
primary school students took part in this stage of the study.

The merit and statistical analyses of the results of the research allowed
for the indication of children with lower competence (less knowledge and
abilities than their peers). The remaining children exhibited varying levels
of competence: they had average skills in some of the aspects of maths
activity, while surpassing their peers in other aspects. It was possible to
discern mathematically gifted and highly gifted children in the varying
levels of competence group. All of the groups will be described.

Children with less knowledge and abilities than their peers

This group contained poorly performing children. They refused to
solve the simplest diagnostic tasks of several of the areas of maths activ-
ity, even when the researcher presented the tasks again and tried guiding
the children step by step towards solving the tasks. There were also chil-
dren who did a bit better. They did not refuse to try solving the tasks,

15. The tools are presented (with research aids) in the aforementioned re-
port from the realisation of the R1700603 project, Wiadomości i umiejętności
oraz zarysowujące się uzdolnienia matematyczne starszych przedszkolaków i małych
uczniów.Podręcznik. . . What’s more, after carrying out this program, I have created
tools for the diagnostic recognition of the mathematics aptitude of children, adapted
for the needs and possibilities of teacher diagnosis. They are described further in this
work, and presented in their entirety in the book O dzieciach matematycznie uzdol-
nionych. . . , part 2, as well as in the E. Gruszczyk-Kolczyńska & E. Zielińska book
Nauczycielska diagnoza edukacji matematycznej dzieci. . . , chapter 7.
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though their involvement solely included helping the researcher by per-
forming simple tasks, such as handing blocks. Some children were a bit
more conscious during the learning phase, e.g. they repeated what the re-
searcher showed them. Unfortunately, this approach to the learning phase
was insufficient for them to solve the next task of the series on their own,
as it was more difficult. About a third of the children taking part in the
study used this approach. The number of boys and girls in this group was
more or less even.

Children with varying competence and children
mathematically gifted

According to the performed research, circa 2/3 of the children exhibit
varying levels of competence (reasoning, information and mathematics
skills) in a given area of mathematics education. If a child performed sim-
ilarly to their peers in a given series of diagnostic tasks, they performed
on a higher or lower level in another series. As this was independent of
the age and sex of the children taking part in the study, the cause must
be the mathematics education carried out at home, at kindergarten and
at school 16. I defined a child to be mathematically gifted if they fulfil the
given criteria in at least one area of mathematics activity:

– Makes use of the learning phase to apply what has been learned
while solving tasks;

– Has the sense and critical thinking ability to notice the absurdities
in ill-constructed tasks;

– Notices that the task is being solved incorrectly (by the researcher,
making mistakes on purpose);

– Creates maths tasks on their own, showing a creative mindset re-
garding maths activity;

– Is not bored while solving series of maths tasks.
I assumed that if a child is able to exhibit all of the aforementioned

mental abilities in one area of maths activity, they can probably do so
in another. It is hard to imagine e.g. Chris having a sense of meaning
behind the ability to count and not having it in regards to calculating,
measuring, etc. Keeping that in mind, I assumed that an indication of
the outline of mathematics aptitude of a child is that they show

16. Among the areas in which a lot of the children had embarrassingly little knowl-
edge and skills are: the value of money and tasks regarding buying and selling, mea-
suring length, mass, capacity, and time, as well as tasks requiring the aforementioned
skills. The reason is that the adults – teachers and parents – do not pay enough atten-
tion to these areas while teaching. The most favoured areas of mathematical activities
are: spatial awareness, counting, addition and subtraction.
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high levels of competence in at least one area of mathematics
activities, as this is typical for mathematics aptitude. Studies
suggest that more than half of the children taking part in the
study fulfil this criteria. This confirmed the earlier research assess-
ment regarding the school performance of the children taking part in the
Dziecięca matematyka [Children’s mathematics] program. The group of
mathematically gifted children also contains highly gifted children, who
are described further.

Mathematically highly gifted children

The group of gifted children consisted of those who showed high levels
of competence in as many as 10 out of 13 analysed areas of maths activ-
ity. There were even two kids (out of 41) in the group of four-year-olds
who exhibited high levels of competence in five and six areas of maths ac-
tivity respectively, matching the competence levels of significantly older
children. I concluded that if children are able to exhibit such skills at four
years of age, it is probably also possible at five, six, and seven years of
age.

Which is why I assumed that if a child exhibits high levels of
competence (reasoning, information, and skills) in give or more
areas of mathematics activity, they can be called mathemati-
cally highly gifted. What’s more, high levels of competence also include
the manifestations of the gifted kids’ mental abilities.

How many older kindergartners and primary school students are ma-
thematically highly gifted? The studies show that:

– The outlines of mathematics aptitude can be observed in four-
year-old children. This confirms the thesis statement concerning
the manifestation of high levels of competence 17. The problem is
that parents and kindergarten teachers cannot fathom the fact that
four-year-old children can manifest high levels of mathematics apti-
tude. Which is why it the aptitude is rarely cared for, which harms
the mental development of the children.

– Outlines of high levels of mathematics aptitude are visi-
ble in five-year-old children. Based on the research I es-
timate that every fifth five-year-old child manifests their
high levels of mathematics aptitude. Despite this, teachers are
convinced that five-year-olds are simply not good at maths, which

17. This is confirmed by H. Gardner (Inteligencje wielorakie. Nowe horyzonty
w teorii i praktyce [Multiple Intelligences: New Horizons in Theory and Practice ],
Wydawnictwo Laurum, Warsaw 2009) in his characterisation of intelligences, includ-
ing logical-mathematical intelligence.
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is why mathematics aptitude in this age group seems impossible to
them. They are also wrong in the assessment of the mental abilities
of children, even those with high levels of mathematics aptitude;

– Six years of age is the optimal time for mathematics apti-
tude to manifest. Mathematics aptitude is clearly defined
at this point, which is why I estimate every fourth child to
be highly gifted. This applies to children attending kindergarten
or pre-first grade classes at school in Poland.

– Primary school students manifest their mathematics apti-
tude significantly less often. Even though before enrolling
to primary school every fourth child can be considered
highly gifted, after a few months of primary school this
changes to every eighth student. What’s more, an analysis of
the functioning of the primary school students solving the series of
diagnostic tasks showed that they are less critical and less brave in
creating tasks on their own. They expect help in solving tasks more
often and less often react to errors in tasks. It is worth noting that
the research was carried out in April, which is the eighth month of
a school year.

Why, after just a few months of being a first grader, does the
number of children manifesting their mathematics aptitude

drop significantly?

To explain this, I have observed mathematically gifted children at
kindergarten and at school in mathematics education classes 18. I deter-
mined that: the reason that the number of young students manifesting
their mathematics aptitude drops significantly is the emphasis on sociali-
sation, which is a part of school education. This is the side effect of the
teacher showing the kids how to behave in a group of students from day
one 19. In turn, the children do their best to fit into the model given by
the teacher, as the teacher is the most important person for them at

18. In the analysis of the process of educating children, I drew from my earlier
experiences gained during the assessment of the educational value of the Dziecięca
matematyka [Children’s mathematics] program, a well as during the research on the
reasons of specific hardships in learning maths.

19. Everyone has to volunteer to answer in a given way, perform tasks according to
the given model, speak to the teacher according to the given model, answer questions
the way they’re supposed to, use their textbooks the same way as others do, etc. This
helps the teacher educate every child the same things (by sticking to the syllabus) in
the same way (the kids all solve the same tasks in their textbooks) at the same time
(as is required by the way classes are organised by the school).
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this point. The problem is that the model is an average student. There is
nothing wrong with socialisation itself. The faster the children understand
the concept of a student, the less trouble there is with their behaviour
and education. There is a dangerous downside to this, as the socialisa-
tion extends to the mental functioning of the young students, enforcing,
mediocrity 20.

The problem is that mathematically gifted children have immense
problems accommodating to the model of the average student due to
their mental abilities and the scope of information and skills they have.
Because:

– They ask too many inquisitive questions, insisting on getting the
answers from the teacher, with little regard for the other children;

– They have more knowledge and skills than their peers, which makes
them bother the other children and the teacher out of boredom;

– They do not yet know how to refrain from critical remarks when
maths tasks are trivial or badly constructed, etc.

No wonder they are constantly chastened, scolded, and called to order.
This quickens the process of shaping them into mediocrity. What’s more,
the parents of gifted children rarely take the side of their child, as they
usually support the teacher’s ideas. They force their child to be obliging
at school, which makes the child average. Such strong pressure makes
mathematically gifted children understand some “life lessons” after a few
months of attending first grade. They begin to understand that there is
no point in:

– Solving maths tasks quickly, as they have to wait for all the other
children to finish anyway;

20. Cz. Kupisiewicz („Zmiana” (change) i „wzmacnianie” (strengthening) – słowa-
klucze współczesnych reform szkolnych [„Change” and „strengthening” – the keywords of
modern school reforms], in: Edukacja narodowym priorytetem. Księga jubileuszowa w
85 rocznicę urodzin Profesora Czesława Kupisiewicza [Education as a national priority.
A Festschrift for the 85th birthday of Professor Czesław Kupisiewicz ], Wydawnictwo
Wyższej Szkoły Humanitas, Sosnowiec 2009) states that the plague of mediocrity en-
compasses multiple education systems across the world, so it’s not just a Polish thing.
The plague of mediocrity is defined by Cz. Kupisiewicz as . . . przeciętne szkoły sto-
sują metody i formy organizacyjne nauczania i wychowania nastawione na przeciętnych
uczniów, którym stawiają przeciętne na ogół wymagania, a zaniedbują dzieci i młodzież
o ponad przeciętnych możliwościach i uzdolnieniach marnotrawiąc bezcenny „kapitał
ludzki” o ogromnym znaczeniu dla przyszłości kraju. . . [. . . average schools use methods
and organisational forms of educating aimed towards average students, of whom aver-
age things are demanded, at the same time neglecting the children and the adolescents
who have above-average capabilities and aptitude, wasting a priceless human capital
that is of enormous significance for the future of the country. . . ]
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– Seek a better, more thought-out way of solving a task, as only the
so-called proper way is the only way of solving a task;

– Exhibiting a higher level of maths skills, as such behaviour is treated
as boasting, which is unacceptable in the eyes of their peers;

– Be critical of the given tasks, even if the tasks are absurd, and the
way of solving them is incorrect. Such a “deviation” is not acceptable
by the teacher’s standards.

The gifted children experience this week after week, month after
month. No wonder all the socially sensitive kids stop exhibiting their
mental capabilities after a few months of attendance, and, what’s worse,
making use of them. This is why there is less and less mathematically
gifted children from one grade to the next. What it all comes down to is
that in later grades there are up to two children who can gain information
and skills easily enough to be considered mathematically gifted.

What teachers think of mathematically gifted children and
why they are wrong in assessing their mental capabilities

The way a child manifests their mental capabilities depends on the
teacher. Whether they will eagerly polish their maths skills and happily
use them in their maths activities, or get discouraged towards everything
related to calculating and measuring. If the teacher believes in the child’s
mental capabilities, he will not be let down. And vice versa – if the child
is being underestimated by the teacher, the child will underperform. As
well as have a lot of behaviour issues.

Which is why, during the course of the research regarding the math-
ematics aptitude of older kindergartners and primary school students, I
have asked the teachers to evaluate the mental capabilities of each child
taking part in the study, using a very simple scale:

– The child is distinctly younger, performs poorly, more childish than
their peers;

– Functions on the same level as the other children, so they’re on an
average level;

– The child stands out in terms of mental capabilities.
The results of this study show a surprisingly strong tendency of

the mental capabilities of mathematically gifted children being
undervalued by the teachers who educate them. For instance, in
a group of 8 mathematically gifted five-year-olds, only two were graded
as standing out in terms of intellect. In a group of seven-year-olds, only
every fourth child was labelled as such. What’s more, this grade was given
to children who outperformed their peers in more than five (out of 13)
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areas of maths activity, exhibiting the mental abilities described earlier.
There are most probably a few reasons as to why the mental capabilities
of mathematically gifted children are undervalued.

It is likely that the behaviour problems exhibited by the gifted chil-
dren obscures their mental abilities in the eyes of the teacher. The kids,
being bored, cause trouble during lessons and do what they’re not sup-
posed to. They’re know-it-alls who ask lots of questions, often unrelated
to the topic of the lesson. They criticise trivial maths tasks or propose al-
ternative ways of solving tasks. When scolded, they rebel by disregarding
the rules, etc. This is probably why the teachers do not remain objective,
as they think misbehaving children cannot be gifted. Definitely not in
mathematics!

Another reason might be the fact that all the soon-to-be teachers
taking part in academic courses relating to kindergarten/primary school
education in Poland do not have any classes 21 preparing them for the
recognition of the aptitude of children and adjusting their education ac-
cordingly.

Critical (sensitive) periods of the development of mathematics
aptitude in older kindergartners and students

The critical periods of the development of mathematics aptitude are
kindergarten and primary school years, during which the fate of math-
ematically gifted children, as well as younger and older students is de-
cided. Psychologists use the term critical period in regards to pairing the
learning process to the mental capabilities of a child, including the ef-
fectiveness of obtaining life skills 22. This concerns a period of enhanced

21. An analysis of the timetables of academic courses for teaching has shown that
in the academic year of 2011/2012, not one of the names of the classes suggested that
any kind of discussion regarding gifted children will be taking place during the course
of the year. There were, however, several classes preparing for work with children with
mental development problems, as well as children with insufficient school maturity,
etc.

22. M. Przetacznikowa (Podstawy rozwoju psychicznego dzieci i młodzieży [The ba-
sics of the mental development of children and adolescents], WSiP. Warsaw 1978,
chapter Problem okresów krytycznych w ontogenezie [The problem of critical periods
in the ontogeny ]) states that psychologists use the word sensitive when describing
critical periods, defining them as such: okresy krytyczne uważa się za sensytywne, nie
wykluczając możliwości przyswojenia sobie przez jednostkę określonych sprawności i
umiejętności także poza granicami czasowymi fazy krytycznej, optymalnej dla ukształ-
towania danej funkcji, jakkolwiek przyjmuje się, że proces uczenia się jest wówczas
mniej skuteczny [critical periods are considered sensitive, not excluding the possibil-
ity of the individual learning certain capabilities and skills outside the time frame of
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susceptibility to the learning process, as shown by the optimal readiness
of the central nervous system to form what psychologists call schemas
or mental representations 23. Teachers call them information and skills.
This optimal readiness for learning is called by L. S. Vygotsky the zone
of proximal development, underlining its importance in the dynamics of
mental development and the effectiveness of education 24. The point of
this term can be described as such:

– Children create cognitive schemas in their minds drawing on specific
logical experiences due to the interiorisation mechanism 25.

– When a parent organises the child’s learning process in such a way
as to allow the child to gather the logical experiences needed to
create schemas, it eases the interiorisation and increases the tempo
of mental development 26;

– The child uses schemas in acquiring information and skills, which
fulfils their developmental needs as well as reinforcing their self-
esteem and agency.

the critical period which is considered optimal to obtain such functions, although it is
assumed that the learning process is then less effective].

23. These schemas are named in different ways: J. S. Bruner (Poza dostarczone
informacje [Beyond the presented information], PWN, Warsaw 1974, part 4 Procesy
reprezentacji w dzieciństwie [Processes of representation in childhood]) uses the term
representations, and J. Piaget (The Psychology of the Child, PWN, Warsaw 1966,
as well as The Equilibration of Cognitive Structures: The Central Problem of Intel-
lectual Development, PWN, Warsaw 1981) calls them cognitive schemas (structures),
explaining that they are created by assimilation and accomodation and their mutual
coordination and equilibration.

24. It is a theoretical construct created by L. S. Vygotsky (Wybrane prace psycho-
logiczne [Selected psychological works], PWN, Warsaw 1971, pp. 351-365, 517-530) to
create a relation beneficial for the mental development of children between the ma-
turing of the central nervous system and the course of the learning process, which is
organised by their parents.

25. I describe the mechanism of interiorisation (learning through internalising expe-
riences) in detail in the cited work Dzieci ze specyficznymi trudnościami w uczeniu się
matematyki. . . , chapter Teoretyczne podstawy zajęć korekcyjno-wyrównawczych [The
theoretical basis of compensatory activities].

26. A more in-depth explanation of such educational opportunities can be found
in the work of E. Grusczyk-Kolczyńska and E. Zielińska Zajęcia dydaktyczno-
wyrównawcze dla dzieci, które rozpoczną naukę w szkole [Compensatory activities for
children beginning school education]. Wydawnictwo Edukacja Polska, Warsaw 2009,
pp. 24-43. It is also the topic of a lecture by E. Gruszczyk-Kolczyńska from the O
dobrym wychowaniu przedszkolaków [About the proper upbringing of kindergartners]
series called O wspomaganiu rozwoju umysłowego dzieci [Supporting the mental devel-
opment of children], “Bliżej Przedszkola” 2010, issue 9.
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Learning does not give any desirable effects if the parent is trying to
facilitate a skill which the child is not yet ready to master. For instance,
if the child can perform addition and subtraction of objects by counting
them after every move, they won’t be able to do it from memory. The
parent cannot change that in any way. They will achieve a desirable effect
after helping the child understand counting using e.g. the child’s fingers.
If this method of counting no longer causes problems for the child, they
need to be supported in their transition to calculating from memory.
This is how the zone of the development of a child’s calculating skills
progresses.

The results of the research presented earlier shows that the earliest
such interval occurs during the last year of kindergarten and the beginning
of school education. That is when children exhibit and develop the mental
traits responsible for mathematics aptitude. Kids can be assisted with
this process, but they can also be suppressed. All it takes is to disregard
the child’s maths activity, decrease the amount of mental work of the
child by cutting back the amount of calculating, etc. If the outlining
maths aptitude is not developed and nurtured, the aptitude wastes away,
which cannot be made up for in the following years of education. This is
confirmed by the research presented earlier regarding the school fate of
mathematically gifted children.

Another critical period occurs when children begin fourth grade in
Poland, which is when their maths education starts being conducted by a
maths teacher. This occurs because there is a significant shift in the way
of the way information and maths skills are formed. These changes are
often very significant and emotionally draining even for gifted children,
so much so that a lot of them lose faith in their own mental capabilities,
therefore losing motivation to learn maths. This, unfortunately, happens
often.

This happens due to maths teachers overrating the mental capabil-
ities of students. When assembling the contents and methods of maths
education it is assumed that the students have the ability of formal op-
erational thinking, swiftly making use of symbols 27. One would assume
gifted students would rise to the challenge due to their superior devel-
opment of operational thinking when compared to their peers 28. Unfor-

27. Cf. Siwek H., Dydaktyka matematyki. Teoria i zastosowania w matematyce szkol-
nej [Didactics of mathematics. Theory and application in school mathematics ], WSiP,
Warsaw 2005, chapters Klasy pojęciowe w podręcznikach klas IV-IV [Conceptial cat-
egories in textbooks for Polish grades 4-6 ], Elementy logiki w matematyce szkolnej
[Elements of logic in school mathematics], O odkrywaniu, formułowaniu i dowodzeniu
twierdzeń [Of the discovery, formulation, and proof of theorems].

28. It is worth noting that J. Piaget was a bit too optimistic in stating that achiev-
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tunately there are also many difficulties that need to be faced, and this
blocks the development of mathematics aptitude.

Operational reasoning on the formal level, similarly to the level of
concrete operations 29, gradually expands in a way resembling circles in
water, absorbing other zones of intellectual functioning. Just because stu-
dents can make use of formal operational reasoning in the context of spe-
cific areas of maths does not mean that this happens for all areas. Which
is why a lot depends on the maths teacher and whether they know how
to:

– match the formulation of information and skills to the actual mental
capabilities of the students in concrete contexts;

– understand the mental characteristics of a gifted student, relish
their accomplishments and encourage them towards independent
maths activity;

– support the gifted student in the pursuit of understanding new
available areas of maths, as well as allow them showing off their
abilities on contests and competitions.

It is worth noting that fulfiling these quite standard expectations is
hard, as maths teachers are seldom taught during courses how to properly
take care of gifted students. They learn a bit about the proper mental
development of students in didactics of mathematics classes 30. If the

ing this level of reasoning occurs at 12 or 13 years of age (Studia z psychologii dziecka
[The Psychology of the Child ], PWN, Warsaw 1966). More recent British studies show
that 80% of students are still not at the early level of the concrete operational stage
at 14 years of age. The basis of the research were studies conducted on 10,000 pri-
mary school students. Cf. M. Shayer, D. E. Küchemann, H. Wylman Distribution of
Piagetian Stages of Thinking in British Middle and Secondary School Children „British
Journal of Education Psychology” 46, 1976 .

29. More information available in the book ]textitWspomaganie dzieci w coraz pre-
cyzyjniejszym klasyfikowaniu. Stosowanie klasyfikacji w edukacji matematycznej [As-
sisting children in more precise classification. Use of classification in mathematics
education], in: Wspomaganie rozwoju umysłowego oraz edukacja matematyczna dzieci
w ostatnim roku wychowania przedszkolnego i w pierwszym roku szkolnej edukacji.
Cele i treści kształcenia, podstawy psychologiczne i pedagogiczne oraz wskazówki do
prowadzenia zajęć z dziećmi w domu, w przedszkolu i w szkole [Assisting in mental de-
velopment and the mathematics education of children in the last year of kindergarten
and the first year of primary school. Goals and instructions for teaching, the psycho-
logical and pedagogical basis, and tips for conducting classes with children at home,
at kindergarten, and at school ], ed. E. Gruszczyk-Kolczyńska, Wydawnictwo Edukacja
Polska, Warsaw 2009, chapters 7, 8, 10, 11, 12, 17, 19, 20, 21, 22.

30. This is discussed only in specialised psychological works, which are not well
known even among psychologists, as they were issued over half a century ago in limited
circulation in Poland. For instance, H. Aebli Dydaktyka psychologiczna. Zastosowanie
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curriculum of educating maths teachers changes, their students will have a
chance of developing their mathematics aptitude. Unfortunately, for now
this is only possible for students who stumble upon exceptional teachers
during their education.

The next critical periods occur as students finish a stage of education
and move onto the next. A common feature of these critical periods is
that less attention is being paid towards scaling the level of material in
maths education to the mental capabilities of students. The accompa-
nying coincidental situations in family life, kindergarten education, and
school education yield either positive or terrible results.

Can an adult without a mathematics education effectively develop
the mathematics aptitude of children?

Explaining this issue is necessary, seeing as during the first critical
period of developing maths aptitude, the people in charge of raising and
educating the children are their parents, kindergarten teachers, and non-
specialised primary school teachers. Only some of them are interested in
maths activity, and their education varies.

Before working on the program regarding assistance for the growth of
mathematically gifted children 31, I have asked maths didacticians this:
What has to be done in order for a gifted child’s mind to grow? Everyone
exclaimed that the tasks the children are given have to be interesting.
This is probably why books such as I ty zostaniesz matematykiem [Even
you can be a mathematician] are filled with such tasks. However, from
my experience, I can state that feeding interesting maths tasks to gifted
children is a pedagogical trap. It causes a type of emotional addiction
caused by the following events:

– The joy of solving interesting tasks compels the children to demand
more and more tasks;

– The children understand that an adult is the creator of the tasks
at hand and experience the adult’s intellectual superiority in maths
activity;

– Involuntarily they ascertain that their skills are very poor, which is
why they abstain from creating maths tasks on their own.

teorii Piageta do dydaktyki [Psychological didactics. The application of Piaget’s psy-
chology to didactics] (PWN, Warsaw 1959, reissued in 1982), B. Inhelder and J. Piaget
The Growth of Logical Thinking From Childhood to Adolescence (PWN, Warsaw 1970).

31. This program was created after the aforementioned research was carried out.
It is included with psychological and pedagogical commentary in the cited work O
dzieciach matematycznie uzdolnionych. . . in the chapters of part four.
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This also results in the fact that children are less and less interested in
independent maths activity in real-life situations. This effectively blocks
the development of the maths aptitude of children.

This is why in my concept of assisting gifted children 32 there are
important series of tasks which are assembled and solved in an alternating
fashion, like so: the adult creates an easy task for the child to solve,
followed by the child creating a similar task for the adult, who solves the
task. This is done several times. Among alternating between assembling
and solving the tasks, there is also time for error correction: the adult
intentionally makes a mistake while solving one of the tasks created by
the child in such a way so that the child can notice the mistake. The child
then corrects the mistake, which makes them understand that making
mistakes is not a tragedy, they just need to be corrected. This encourages
the children and helps them have a sense of meaning, as well as teaching
them how to behave when they make a mistake. Which is also what this
is about. Children can work in pairs in a similar manner: one of them
creates a task, the other one solves it. And vice versa.

This method yields positive educational results as long as the tasks
created by the adult at the beginning of each series are simple. The child
has a feeling of intellectual partnership in such a situation. The child
begins an intellectual pursuit, by wanting to impress the adult with their
skills, whereas the adult can keep track of how far can the child’s reasoning
go. During such an intellectual skirmish, the child:

– forms a creative approach towards maths activity;
– develops a sense of meaning and the ability of making an intellectual

effort;
– improves their maths skills;
– feels productive and improves their self-esteem.
This is why it is better to support the children in independent maths

work rather than burying them in interesting tasks. Though this does not
mean such tasks are never to be used. They are a source of logical and
mathematical experience for the children.

There is also no reason for the adult to be afraid that their lack of
maths competences will hinder the child’s accomplishments. It is the child
who is set to become extraordinarily successful in learning maths, not the
adult. It works similarly in sports — the coaches of gifted athletes are
proud of their results and do not feel discouraged by the fact that the
athletes are achieving more than the coaches possibly could.

32. This is described in chapters three and four in the cited work O dzieciach matem-
atycznie uzdolnionych. . .
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Arguments for the recognition of the mathematics aptitude
of older kindergartners

I have been asked multiple times, Is it not too early to facilitate the
development the mathematics aptitude of kindergartners? Will it not re-
strict the mental capabilities of the children? Will it not harm their other
interests? etc. This is not something to be afraid of. Five, six, and seven
years of age is a great time to facilitate the development of maths apti-
tude. This is when the first critical period of developing maths aptitude
takes place in the child’s life. If parents will not properly facilitate the
development of their children’s aptitude, it will not be manifested. It is
hard, if not impossible, to make up for the lost time in the following
years. This is another strong argument for the early recognition of the
mathematics aptitude of children.

In the kindergarten years, as well as the first years of primary school,
the child develops traits that serve as the basis for achieving extraordinary
results, not only in mathematics education. Plus, there is no reason not
to facilitate the development of any other interests the child might have
alongside their mathematics aptitude.

If, for instance, the parents make sure that the child takes part in the
fascinating shows at the Copernicus Science Centre, the child will want
to become a space expert. If the child is encouraged to perform experi-
ments and get to know the complexity of physical phenomena, then this
is what the child will be fascinated with. If a grandfather and grandson
e.g. disassemble a motorcycle together, and then assemble it back, the
child will become fascinated with mechanics. In order to succeed in these
and similar branches of activities, high levels of mathematics competence
are required. There will be time for profiling and expanding this aptitude
onto other branches of science.

Let us focus on recognising aptitude, as supporting children in devel-
oping their aptitude can only begin once the aptitude is diagnostically
recognised. The realisation of the project Rozpoznawanie i wspomaganie
rozwoju uzdolnień do uczenia się matematyki u starszych przedszkolaków
i małych uczniów [Recognising and encouraging the development of apti-
tude for learning mathematics in older kindergartners and primary school
students] ended with the formulation of the concept of assessment and
of diagnostic tools designed for the purpose of this research 33. The prob-

33. The report regarding this research (named R1700603) contains the assumptions
of the diagnosis, the research procedure, as well as tools for use in the study along
with a statistical confirmation of their diagnosticity. A program can be created, on
the basis of the diagnosis, for the assistance of mental development and custom-made
mathematics education, matching the development and educational needs of a gifted
child.
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lem is that such an assessment takes time, is carried out individually and
requires essential prep work.

One more concept and set of diagnostic tools intended for teachers
had to be created. They are the first adults who can notice and with
relative objectivity assess the mathematics aptitude of children. This, in
turn, allows for a head-start in taking proper pedagogical care of the
children and the development of their extraordinary gift.

Short description of the teacher diagnosis for the recognition
of mathematics aptitude in older kindergartners

After finishing the aforementioned research, I have worked for months
on such a concept of a diagnosis and set of diagnostic tools that would
be tailored to the specifics of a teacher’s diagnosis. In the spring of 2011,
the diagnosis was tested in realistic conditions of kindergarten teaching:
in 20 kindergartens in Olsztyn.A number of 731 children took part in the
study 34. The concept of the teacher diagnosis is presented in-depth in
the cited work O dzieciach matematycznie uzdolnionych. . . 35 along with
diagnostic tools, hints regarding interpretation and further pedagogical
work 36.

The goal of the teacher diagnosis is to assess what the children know
and can do in given areas of mathematics activity, and to deduce their
mathematics aptitude. It encompasses children who are nearing the end
of kindergarten education as they manifest their mathematics aptitude,
the first months of primary school education the latest. The diagnosis
consists of two segments. The first segment is the screening study 37, the

34. The results of this study were presented on the conference Dziecko uzdolnione
matematycznie – diagnozowanie oraz wspieranie w rozwoju i edukacji [Mathematically
gifted child — diagnosis and support in development and education ] (19 September
2011, the In-Service Teacher Training Centre in Olsztyn) in the works of E. Zielińska
Rozpoznawanie uzdolnień matematycznych dzieci [Recognising the mathematics apti-
tude of children] and J. Jastrzębska Matematyczne uzdolnienia dzieci w olsztyńskich
przedszkolach – problemy, wyniki badań, wnioski [Mathematics aptitude in Olsztyn
kindergarten children – problems, research results, conclusions].

35. The chapters of the second part of the book focus on this subject.
36. All wishing to adhere to these resources have to prepare, learn the research

scenarios, gather the necessary items, and understand the notation of the results and
interpretation. Based on the feedback, this does not seem to be a difficult endeavour.

37. The screening study, apart from the goal of the diagnosis, allows for the realisa-
tion of a second goal of circling out the children who lag behind their peers, in order
to assemble remediation activities for them. This will better prepare the children for
primary school education.
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goal of which is to assess the individual differences in given areas of maths
activity and to pick out the children who either:

– perform worse than their peers;
– have skills and information on an average level;
– or stand out with their level of skills and information.
The second segment of the teacher diagnosis is individual research

of the children. If the goal of the teacher diagnosis is the assessment
of mathematics aptitude, this segment will encompass all the students
that performed exceptionally in the first segment of the diagnosis. The
two segments of the diagnosis are to be carried out in order. In the first
segment, the diagnostic goals are combined with the curriculum content
of maths education at kindergarten and at school. Which means that
this segment can be carried out in mathematics classes, in the morning.
The second segment has to be carried out at another time, as it involves
individual research.

The leading method in the teacher diagnosis for the recognition of
mathematics aptitude in children are diagnostic experiments. Each of the
experiments contains:

– Organisational work to ensure that the conditions for every child
are as identical as possible: gathering the necessary number of items
for manipulation and preparing the assigned space for every child;

– Series of diagnostic tasks created in such a way that every child will
understand what is expected of them and what is to be done;

– A uniform approach to the observation and interpretation of the ac-
tivity of the children solving the diagnostic tasks. This also includes
uniformity in logging the results of the studies on the diagnostic
sheets.

The series of diagnostic tasks that the child is to solve are important
in every such experiment. I based the tasks on: a) the correctness of the
development of Piaget’s concrete operational thinking, b) reasoning by
insight, as children prefer to do this while solving maths tasks, c) the
models of development of mathematics aptitude related to calculating 38

as well as the scope of the curriculum content in kindergarten and primary
school education 39. I have also taken into consideration findings regarding

38. This is discussed in E. Gruszczyk-Kolczyńska and E. Zielińska Liczenie. Wspo-
maganie dzieci w ustalaniu prawidłowości, które są stosowane w liczeniu obiektów.
Kształtowanie umiejętności liczenia [Calculating. Assisting children in determining
the regularities of counting objects. Developing numeracy ], in: Wspomaganie rozwoju
umysłowego oraz edukacja matematyczna dzieci w ostatnim roku wychowania przed-
szkolnego i w pierwszym roku szkolnej edukacji. . .

39. This is described in the core curriculum for early primary school and kinder-
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the way children undertake and solve instructions and tasks: the attitude
towards the tasks, understanding their meaning, solving the tasks in the
proper order, feeling satisfied after solving the tasks.

The teacher diagnosis focused on these areas of mathematics educa-
tion in which the children show off their knowledge and skills, as well as
the mental attributes indicating mathematics aptitude. Unfortunately, for
some reason some of the teachers and parents do not pay enough atten-
tion to some of the areas of mathematics activity. Usually those regarding
measuring length, capacity, mass, and time. Children are also sometimes
not given pocket money, and this causes them to neither understand the
value of money, master money-related calculations, nor understand any
activities related to economics 40. The child not solving diagnostic tasks
relating to this matter might stem from educational neglect, and not from
a subpar mental performance.

Having this and other complications in mind, I have established three
areas of the mathematics education of children. They are:

X counting;
X addition and subtraction, including window-related tasks;
X creating and solving instruction-based tasks, including tasks with

intentional errors.
This is backed by organisational and substantive arguments. By coun-

ting and calculating, children make use of intellectual activities that en-
tail success in basically all areas of maths activity carried out at home,
at kindergarten, and at school. Also, the details of the development of
numeracy in children is well-known, which allows for a relatively precise
determination of whether the knowledge and abilities of a child are ade-
quate to their age, or whether they are under- or over-performing. While
creating and solving tasks related to counting and calculating, children
can exhibit mental characteristics consistent with mathematics aptitude.
By encountering the intentionally placed mistakes while solving tasks, as
well as misconstructed instruction-based tasks, the children can exhibit
a sense of meaning. Diagnostic tools requiring the use of counting and
calculating can be created in such a way so that the children could solve
them in group research (the first segment of the diagnosis) as well as

garten education, attachments 1 and 2 of the 23 December 2008 regulation imple-
mented by the Ministry of National Education in Poland.

40. The results of research regarding economics education are presented by M.
Kupisiewicz in the book Jak kształtuje się u dzieci rozumienie wartości pieniądza.
Z badań nad rozumieniem wartości pieniądza i obliczeniami pieniężnymi. [On chil-
dren understanding the value of money. Research on the understanding of the value of
money and money-related calculations.] Wydawnictwo APS, Warsaw 2004.
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individual research (the second segment of the diagnosis). The execution
of the diagnostic tasks in the area of counting and calculating does not
take long.

A short description of the first segment of teacher diagnosis

The research is to be carried out in the morning, as part of mathe-
matics classes. Which is why this segment was created in such a way as
to permit the simultaneous realisation of:

– Educational goals: improving counting and calculating skills in the
children taking part in the diagnosis (in accordance to the recom-
mendations of the new kindergarten core curriculum);

– Diagnostic goals: assessing the level of knowledge and abilities of the
children in regards to counting and calculating and choosing those
who are: a) average, b) performing poorly as compared to their
peers, c) perform better than their peers – these children move on
to the second segment of the teacher diagnosis.

The first segment of the teacher diagnosis acts as a screening study
and consists of two diagnostic experiments: Counting and Addition and
subtraction. Every experiment contains introductory tasks and series of
diagnostic tasks. Why the introductory tasks? They are necessary if the
diagnostic tasks are to be solved in a group 41, because:

– They direct the reasoning of the children towards the intellectual
activities used in the series of diagnostic tasks;

– They will familiarise the children with the words and instructions
used by the teacher in the series of diagnostic tasks, which will make
them better understand the meaning of the diagnostic tasks.

There is one more solid argument for the inclusion of introductory
tasks. That is the possibility of assessing the ease of acquiring information
and maths skills, which is a mental trait of gifted children. This can
be assessed based on how the child makes use of the logical experience
gathered during the introductory tasks. Because these are situations which
contain the experience that is the building block of perfecting the skills
of counting and calculating. If the child can acquire the experience while
solving diagnostic tasks, this indicates an ease of acquiring knowledge and

41. These tasks are usually solved during individual diagnosis. If the child’s be-
haviour suggests that they are lost, the researcher can repeat the instructions or the
whole task, use gestured to point out the important part, encourage the child towards
being more active, etc. If the diagnostic task is to be solved simultaneously by all of the
children in the group – which is what happens in the first segment of the diagnosis –
these forms of encouragement and support cannot be employed. This can be remedied
by properly incorporating introductory tasks.
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maths skills, which is an important indicator of mathematics aptitude.
In order for all this to happen, introductory tasks must be carried out
before the series of diagnostic tasks are solved.

In order to fulfil diagnostic standards, the first segment of the diag-
nosis is in the form of scenarios used as lesson plans in order to conduct
lessons with children and fulfil the goals of the diagnostic research at the
same time. The scenarios contain in-depth guidelines for:

– The conditions in which the children are to solve the introductory
tasks and the series of diagnostic tasks. The point is that the same
items should be used by the children and the same amount of time
should be available for everyone to solve the tasks.

– Familiarising the children with what they are to do in order to
properly solve the introductory tasks and the diagnostic tasks as
well as observing the children while they are solving the tasks;

– The criteria for the grading of the performance of the children solv-
ing diagnostic tasks created in such a way so that every child can
be assessed individually, but also compared to all the other children
taking part in the diagnosis.

The scenarios also contain the descriptions of the tiers the children
can be categorised under based on the results of the diagnostic tasks.
By observing the children and having the descriptions in mind, it can
be assessed whether the tasks were: a) too hard for them (low tier), b)
hard, but doable (average tier), c) easy (high tier). The last part of the
scenario of the first segment of the diagnosis contains tips for the logging
of the grades of the children taking part in the study, as well as the rules
of interpreting the results of the study and conclusions allowing for the
improvement of the course of education for the children.

Remarks regarding the interpretation

The situation of the children for whom the diagnostic tasks were too
much for their mental capabilities is troublesome (most or all tasks done
poorly). Also, these children do not make use of the introductory tasks
for the following reasons:

– They have a lower susceptibility towards the learning process that
is being facilitated by the researcher, which is why the experience
gathered while carrying out the introductory tasks is not enough
for them to understand and solve the diagnostic tasks;

– They have trouble concentrating and cannot comprehend the com-
plexity of the tasks, which is why they do not follow instructions
unless helped by an adult.

The scope of experiences gathered during their kindergarten and pri-
mary school classes is not enough for these children to develop mathe-
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matics aptitude, mostly in regards to counting and calculating. If these
children are to benefit from mathematics education, they have to take
part in remediation activities.

The children graded as average also need support, but for a different
reason. In spite of having issues, they can still solve the diagnostic tasks,
as the required level of knowledge and reasoning is within their develop-
ment zone. This group may contain mathematically gifted children.

Mathematics aptitude can manifest itself at any time in any child
whose mental capabilities are within the norm. Although the child does
have to be helped in developing the mental attributes responsible for
the development of aptitude (i.e., strong cognitive motivation and the
ability of staying focused for longer periods of time, individuality and
being driven by a sense of meaning, feeling satisfied by the pursuit of a
goal, etc.).

Then there is the case of all the high-tier children with exceptional
competences (most or all tasks solved exceptionally well). These children
reason better than their peers, they know and can do more in regards
to maths, and have no issues using the introductory tasks. They can
be called mathematically gifted. The second segment focuses on a more
in-depth analysis of their mental capabilities.

Short description
of the second segment of the teacher diagnosis

This diagnosis encompasses all the children who know and can do a
lot more than their peers. The goal is assessing whether they possess the
mental attributes that are evident of a developing mathematics aptitude.
The second segment consists of two diagnostic experiments titled: Taking
turns in creating and solving tasks and Intentionally misconstructed tasks.
Both were created as a research scenario.

The Taking turns in creating and solving tasks scenario contains a de-
scription of the conditions in which the teacher and the child are to take
turns creating and solving instruction-based tasks, as well as teaching aids
to be used in this experiment. The researcher and the child create and
solve tasks in series: two for addition and for subtraction. The first task of
the series for addition and subtraction is created by the researcher. It is
very simple, aimed at five-year-olds. The aim is to convince the child that
creating and solving tasks is easy. The child also has the possibility of cre-
ating a harder task for the adult. The child creates a task, the researcher
solves the task. And vice versa. What’s more, the scenario contains a
description of the tasks presented to the child by the adult. When the
series of tasks is nearing completion, the researcher intentionally makes
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a mistake while solving a task created by the child. The goal is whether
the child will notice or not and how will they react.

During the process of creating and solving diagnostic tasks it is im-
portant to take notice of how the way the children taking part in the
study manifest their mental attributes. The reactions and behaviour of
the child are graded on a simple, three-level scale in the following scopes:
a) stance towards maths activity, b) creativity in maths activity, c) a
sense of meaning in counting and calculating.

The scenario of the Intentionally misconstructed tasks diagnostic ex-
periment also specifies the conditions in which the diagnosis is to be
carried out. The misconstructed tasks are then describe along with the
presentation method. The researcher is to observe the reaction of the
child. If the child is surprised, they are asked to fix the mistakes in the
task and create a similarly misconstructed task for the researcher to solve.
The child can either intentionally insert mistakes into the task, create a
proper task (without any mistakes), or not create any task at all. This
research procedure allows for assessing whether the child exhibits: a) a
sense of meaning in maths activity, b) understanding the structure of
instruction-based tasks at school, c) courage in regards to reacting to
absurdities, e.g. when the child is presented with a misconstructed task
by an adult. The second part of the diagnosis ends with tips regarding
the way of assisting the development of mathematically gifted children
at home, at kindergarten, and at school.

Interpretation and assessment of the levels
of mathematics aptitude

The results of the first and second segments allow for precisely divid-
ing the children into three groups. Exceptionally mathematically gifted
children are those who show a lot of interest in creating and solving tasks
while taking turns, are trying to impress with their skills, and want to
create more tasks. This is a sign of well-developed creativity skills as well
as happiness and satisfaction stemming from maths activity. They also
exhibit an exceptional sense of meaning and the ability for the critical ap-
praisal of maths activities. Not only do they notice how the mistakes were
made in tasks, but they also try to correct them and create similar tasks.
They also notice the mistakes made while solving tasks and know how to
correct them. They are courageous in their thought formulation. What’s
more, they know and can do more when it comes to maths than their
peers. There is no doubt about them being exceptionally mathematically
gifted.

Mathematically gifted children are those who are better at counting
and calculating than their peers and can enjoy maths activities. They
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are creative in their maths activity and create tasks in accordance with
the given model. Their sense of meaning helps them notice mistakes
when guided. They understand the structure of instruction-based tasks
at school, but creating a misconstructed task is hard for them. They
are reluctant to voice their concerns when facing a misconstructed task
presented by an adult. This is why they are dependent on the adults
in their maths activity and unsure of their mental capabilities. This can
be remedied easily by encouraging them towards creative maths activ-
ity and creating a proper environment for them to gain knowledge and
mathematics skills.

Average children are those who barely enjoy maths activity, even
though they’re proficient in counting and calculating. They are not cre-
ative enough yet to easily create tasks which require counting and calcu-
lating. They realise that something is amiss when facing misconstructed
tasks, but they do not realise what exactly and do not try to correct them.
They also do not notice the deliberate mistakes made when solving tasks.
This may be caused by too much faith placed in adults, which results in
thinking that the adults are always right. The reason why children choose
to carry out their maths activity in this way is that the adults – parents
and teachers – did not assist the child in developing their creativity. They
also did not facilitate any sense of meaning from the children, as they
thought children should not exhibit any kind of criticism towards maths
activity.

From my pedagogical experience, when taking part in mental devel-
opment classes and faced with an interesting maths education course,
the children eventually get better. This is why these children should also
be assisted in their development and maths education, and not only the
exceptionally gifted.

Actions taken to improve the fate
of mathematically gifted children

I based these actions on the work of great pedagogues 42 who left an
important mark on education. After conceiving a concept, they tested
it by performing a pedagogical experiment at kindergarten or at school
while analysing the course and effects. Teachers were invited to such
places – which can be called islands of pedagogical happiness – for them
to understand what makes a pedagogical concept successful. If they liked
what they saw, they created their own islands of happiness.

42. A good example is The University of Chicago’s Laboratory School founded by
J. Dewey in 1896.
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This is why I keep organising meetings with headmasters, teachers,
and parents 43. I am offering to create islands of pedagogical happiness.
They are being presented with the results of the study regarding mathe-
matically gifted children presented in this work and a concept of maths
education with emphasis on assisting the mental development of children.
The concept contains my program, as well as the rules and methods of
conducting lessons with children who are on their last year of kindergarten
or first year of primary school 44. The concept was created so that children
can develop their minds and learn maths with accordance to their needs
and developmental possibilities. Poorly-performing children perform as
well as their peers, getting better and better month by month, while
mathematically gifted children develop their abilities with no trouble.

At the request of parents and teachers I can provide my program and
the methodology of conducting lessons with children. I also oversee the
educational institutions performing the diagnoses. I oversee the diagnosis
itself, I meet with the parents and teachers of the children. I have also
organised postgraduate courses 45 to prepare teachers for the recognition
of mathematics aptitude in children and planning their education with
the development of their mental skills in mind.

How many islands of happiness have been created so far 46? At the
Morska Kraina kindergarten in Kołobrzeg, the children’s mathematics
aptitude development program has been in effect for four years so far, and
Eureka, a school near Warsaw, has been teaching children in accordance
with my concept for two years now. In Chorzów 47, 14 islands have been

43. I have found tremendous help in systematically organised conferences (proposed
by my publishers of my works) and articles published in the press, e.g. Każdy ma talent
do matematyki [Everyone has a knack for maths.] (Gazeta Wyborcza 11 September
2013), Szkoła rzeźnią talentów [School, the talent slaughterhouse] (Gazeta Wyborcza
29 May 2014).

44. What’s more, I have experimentally tested the educational effectiveness of this
concept by carrying out research as part of a) research project Wspomaganie roz-
woju umysłowego wraz z edukacją matematyczną dzieci w klasie zerowej i w pierwszym
roku nauczania szkolnego [Assisting in mental development and the mathematics ed-
ucation of children in the last year of kindergarten and the first year of primary
school ], no. H01F 083 30, financed by research funding in the years 2006-2009, b)
the project Rozpoznawanie i wspomaganie rozwoju uzdolnień do uczenia się matem-
atyki u starszych przedszkolaków i małych uczniów [Recognising and encouraging the
development of aptitude for learning mathematics in older kindergartners and primary
school students], no. R1700603, financed by research funding in the years 2007-2010.
Reports from the studies are available at the Academy of Special Education in Warsaw.

45. They are conducted at the Academy of Special Education in Warsaw.
46. As of January 2014.
47. The City of Chorzów is very interested in changing the course of mathematics
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organised in kindergartens, and it has been established that the children
will continue their education in schools which will allow for the program
of the assistance for the development of mathematically gifted children
to be carried out.

These establishments publish the mathematics accomplishments of
the children and their teachers on their website. Those interested in as-
sisting in the development of maths aptitude in children can take a look,
and, if they so desire, create their own island of pedagogical happiness.
One of the most important arguments for the fact that this is a way of
changing education for the better is that the headmasters and teachers
of educational establishments in Zakrzew, Bytów, and Kutno are actively
preparing for the experiment. Goleniów might be next, if I manage to con-
vince the parents of kindergartners, the teachers, and the headmasters on
this conference.
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Abstrat. In Germany, girls are decidedly underrepresented in pro-
grams that foster mathematical talent at primary school age. Thus,
it is of interest to ascertain aspects improving their identification
and support. Two studies were conducted to clarify the significance
of motivational factors as determinants for the identification of tal-
ent by comparing girls and boys who were identified to be mathe-
matically talented as well as girls and boys who were not. The first
study focused on self-concepts, attributions and the number of in-
terests, the second on attitudes and mathematics interest. The re-
sults indicate that the characteristics of all examined motivational
factors were more advantageous with girls and boys who were iden-
tified to be talented as well as with boys who were not compared to
girls who were not identified to be talented. Thus, disadvantageous
motivational factors seem to be important aspects to explain the
infrequent identification of girls’ talent.

1. Introdution

In Germany, just like, e.g., in other western European countries, girls
are in proportion decidedly underrepresented in programs that foster
mathematical talent (Benölken, 2011). This phenomenon contradicts the
consensus on the fact that both sexes do not differ in their cognitive abil-
ities independently of certain domains (Endepohls-Ulpe, 2012). When it
comes to primary school age, aspects like gender stereotyping of math-
ematical occupational fields rather cannot act as possible explanations,

Key words and phrases: mathematical talent, mathematical giftedness, gender,
motivation.
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especially because there cannot be found any gender-specific differences
in mathematical competencies at this age (Lindberg et al., 2010). In ad-
dition, studies have indicated a decline of such differences at subsequent
ages for many years (Hyde et al., 2008). Thus, it is of interest to look for
aspects improving the identification of girls’ mathematical talent. With a
holistic approach diagnostics should be organized as a process considering
both cognitive and co-cognitive parameters as determinants in order to
identify talent (cf. 2.). Among other factors, motivational constructs like
“self-concept”, “interest”, “attributions” or “attitudes” play an important
role in this context raising the question how they can be characterized
with girls and boys who were identified to be mathematically talented
(“imt”) as well as with girls and boys who were not (“n-imt”). In this
article, their significance as determinants in order to identify mathemat-
ical talent at primary school age will be examined by two questionnaire
studies (Benölken 2014; 2015), whose aim is to look for boys’ and girls’
frequent characteristics by a comparison of the mentioned four groups.
Based on literature reviews, hypotheses on possible characteristics will be
deduced that correspond to the studies’ questions. Afterwards, the design
and the results of the studies will be reported and discussed.

2. Some preliminary notes about mathematial talent

According to Fuchs and Käpnick (2009), in this article “mathemati-
cal talent” is seen as an above-average potential regarding the criteria of
Käpnick (1998), i.e. remembering mathematical facts, sensitivity and fan-
tasy, structuring and transferring structures or reversing thoughts. This
potential is characterized by individual determinants and a dynamic de-
velopment depending on inter- and intrapersonal influences in interde-
pendence with personality traits supporting the talent. Research on the
regarded motivational factors mostly refers to “giftedness” as a “g-factor-
concept” implying standardized diagnostics. Thus, their results cannot
be transferred automatically to the reported view on “mathematical tal-
ent” regarding domain-specific criteria and implying long-term process
diagnostics. Existing findings collectively show, however, the significance
of the regarded motivational factors as determinants in order to identify
girls’ mathematical talent. Therefore, they are suited to provide a basis
for the intended deduction of hypotheses.
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3. Design and results of the first study

3.1. Theoretial frameworks and brief literature reviews

As to self-concepts, the conception applied in the study refers to
Shavelson, Hubner & Stanton (1976): Self-concepts develop globally and
domain-specifically containing both cognitive-evaluative and affective
components. They can already be found at primary school age (Marsh,
Craven & Debus, 1991). Studies show that as early as at this age, gifted
and non gifted children differ in their global- and domain-specific self-
concepts (Rost & Hanses, 2000). In contrast to global self-concepts (Rost
& Hanses, 2000), there are findings about gender-specific differences in
domain specific ones (Rustemeyer & Jubel, 1996). Boys, e.g., often show
better self-concepts in mathematics (Pohlmann, 2005), girls in social or
verbal skills (Valtin & Wagner, 2002). Among other things, disadvanta-
geous mathematical self-concepts seem to be responsible for the fact that
primary school girls do not tend do a strong preoccupation with math-
ematics (Dickhäuser & Stiensmeier-Pelster, 2003). Obviously, boys and
girls who were identified to be gifted do not differ in their mathematical
self-concepts (Wieczerkowski & Jansen, 1990).

In this article, interest is seen as a result of an interaction between a
person and an object that – along with adjuvant conditions – causes to
focus on a long-term preoccupation with it (Prenzel, Krapp & Schiefele,
1986; cf. 4.1.). A couple of studies show that even primary school children
often have a lot of interests like sports, TV, computer games or reading
(Pruisken, 2005). Furthermore, gender-specific differences can already be
found at this age (Hoberg & Rost, 2000): horseback riding, animals or
reading seem to be “typical” girls-, football, technics or computer “typ-
ical” boys-interests (Fölling-Albers, 1995). Boys even at primary school
age more often show stronger mathematics interest; girls language or lit-
erature interest (Pruisken, 2005). Though gifted children show the same
differences, they do not have any extraordinary interests, but gifted chil-
dren generally seem to be more interested in both mathematics and lan-
guages or literature (Pruisken, 2005). In contrast to non-gifted girls, gifted
girls have more interests which are supposed to be “typical” interests of
boys, and they have a larger spectrum of interests than gifted boys (Kerr,
2000).

The construct of attributions refers to reasons that an individual pro-
vides to explain his or her achievements. They are basically divided into
the dimensions of “locus of control” and “stability” (Weiner, 1986). Stud-
ies show that as early as at primary school age and irrespectively of
certain domains, especially in mathematics, girls tend to attribute suc-



[270℄ Ralf Benölken

cess external-unstably and failure internal-stably, i.e. disadvantageously.
In contrast, boys tend to advantageous internal-stable attributions of suc-
cess and external-unstable ones of failure (Rustemeyer & Jubel, 1996).
Contemporary studies indicate that girls (even if they are gifted) more
often tend to internal-unstable attributions of success, while boys still
tend to internal-stable ones (Dickhäuser & Meyer, 2006; Tirri & Noke-
lainen, 2011). Gifted children generally attribute more advantageously
than non-gifted children (Schütz, 2000).

3.2. Questions

The following hypotheses were deduced from the theoretical findings:
(1) Imt girls and boys as well as n-imt boys show more advantageous
mathematical self-concepts than n-imt girls. (2) Imt girls have a larger
spectrum of interests than imt boys, n-imt girls and n-imt boys. (3)
Imt girls and boys tend to internal attributions of mathematical success
(3a.1). N -imt boys more often tend to internal attributions of mathemat-
ical success than n-imt girls (3a.2). Imt girls and boys tend to external
attributions of mathematical failure (3b.1). N -imt boys more often tend
to external attributions of mathematical failure than n-imt girls (3b.2).

3.3. Design

The study adds to Benölken (2011), especially to parts focusing on
the significance of motivational factors as determinants in order to iden-
tify talent. Data of Benölken (2011) was used to enlarge the imt girls’
sample because of their infrequent identification. Aiming at the composi-
tion of an instrument that is appropriate to primary school children and
that can be completed in a short time, operationalizations of self-concept
and attributions were extracted from a questionnaire that focuses on
motivation beyond other domains and were put together with a short
interest-questionnaire (in each case tested within pilot studies; Benölken,
2011).

3.4. Sample and proedure

The sample contains N = 288 children of the third and fourth grade
(132 f, 156 m). The subsample of imt children is n = 165 (66 f, 99 m).
Children who are assessed to be “mathematically talented” take part in
a project that fosters mathematical talent at the University of Münster
called “math for small pundits”. They were chosen by long-term process-
diagnostics that are a synthesis of standardized and non-standardized
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tools (cf. 2.; Benölken, 2014). From this group of probands 85 were ques-
tioned during the school year of 2012/2013 (35 f, 50 m). In addition to
that, all children who completed the questionnaire of interests in the study
of Benölken (2011) were included, i.e. n = 80 (31 f, 49 m), among them
n = 33 probands (14 f, 19 m) whose data about self-concept and attribu-
tions could be clearly assigned. These probands were questioned during
the school year of 2008/2009 using a non-anonymized questionnaire (as
opposed to subsequent questioning). The sample contains n = 123 n-
imt primary school-children (66 f, 57 m) from common classes questioned
during the school year of 2012/2013. The n-imt group is obviously inde-
pendent of the group of imt children. All procedures of questioning were
consistent: The children were told how to fill in the questionnaire. They
completed it on their own without any time limit (no one took more than
15 minutes and no one refused to fill in the questionnaire).

3.5. Method

Apart from declaring sex, the questionnaire was anonymized. In order
to measure self-concepts by both a cognitive-evaluative and an affective
aspect, the following instruction was given: “Mark with a cross a state-
ment that is proper to you: [1] I am very good at math. [2] I particularly
enjoy solving difficult math-tasks”. To evaluate the items in each case
a four-step Likert-scale was offered (“that’s not correct”, “that’s almost
not correct”, “that’s almost correct”, “that’s correct”; instead, the children
could choose “I don’t know”). To collect data about the number of inter-
ests, a schedule according to the above mentioned research results was
composed intending to offer a large spectrum of interests (cf. Benölken,
2014). Beyond that, further interests could be added into open lines. The
instruction was: “Mark with a cross all interests that you have. In the open
lines you can also note interests that are not mentioned”. Attributions of
success were operationalized by the instruction: “Imagine: You solved a
difficult math-problem. Why did you succeed? Because. . . [1] you worked
really hard, [2] it was random, [3] you’re very good at math, [4] the task
was simple”. Attributions of failure were analogically operationalized (cf.
Benölken, 2014). Just one answer was allowed to be chosen to get the
strongest trend. Instead “another reason” could be added for both suc-
cess and failure in an open line. These answers could be assigned to the
dimensions of Weiner (1986) afterwards in all cases.
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3.6. Evaluation

Statements about self-concept-items were translated into numbers
from 1 (“that’s not correct”) to 4 (“that’s correct”). The coefficient of cor-
relation as defined by Pearson between these items is .588 (p < .001) and
the internal consistency is acceptable or even good (Cronbachs α = .73).
The items have been combined to one scale with mean values. The chosen
interest-items have been transformed into one variable containing their
sum. Data about self-concepts and interests have been evaluated by an
analysis of variance with two factors (“talent” and “sex”) to find signifi-
cant differences between the four groups. In addition to that, η2-values
have been calculated to see the importance of both the factors and their
interaction by their effect size. As to the evaluation of attribution-data,
cross-tabs have been built containing talent, sex and the dimensions of
Weiner (1986). They also include standardized residua to point out sig-
nificant differences: Values ≤ −1.96 or ≥ 1.96 indicate an ascertainable
divergence from expected frequency in each cross-tabs-cell regarding to
a level of significance of α = .05 (Eid, Gollwitzer & Schmitt, 2011). The
significance of possible differences was tested using the exact Fisher-test:
According to Weiner’s dimensions, attribution was operationalized by a
nominal scale consisting of four values. Data of imt and n-imt children
were evaluated independently. For remarks about requirements of all sta-
tistical procedures see Benölken (2014).

3.7. Results

self-concepts interests
boys girls boys girls

imt children 3.58 (.44) 3.60 (.42) 8.68 (3.43) 12.44 (3.82)
n = 69 n = 49 n = 99 n = 66

n-imt children 3.33 (.59) 2.58 (.87) 7.44 (2.47) 11.11 (3.21)
n = 57 n = 66 n = 57 n = 66

Table 1. Averages (standard deviations) of self-concept-statements
and of interests’ sum.

Table 1 shows averages and standard deviations of both self-concept-
statements and the total sum of interests. As to self-concepts, there are
significant main effects on talent (F (1, 237) = 63.39, p < .001, η2 = .211)
and sex (F (1, 237) = 21.16, p < .001, η2 = .082) as well as a significant
effect of interaction (F (1, 237) = 23.80, p < .001, η2 = .091). Thus, there
is a main effect on sex which cannot be interpreted because the averages of
imt boys and girls are nearly identical. As indicated by η2-values, talent



Researh results on mathematial talent, gender and motivation [273℄

(strong effect) plays a bigger part to explain variance than interaction
between talent and sex (medium effect). Therefore, imt children have
more advantageous self-concepts in comparison with n-imt children, but
n-imt boys merely differ a little. This fact confirms hypothesis 1.

Looking at the number of interests, there are significant main effects
on talent (F (1, 284) = 10.50, p = .001, η2 = .036) and sex (F (1, 284) =
86.77, p < .001, η2 = .234), but there is no effect of interaction (F (1, 284)
= .01, p = .915, η2 = .000). Sex (strong effect) plays a bigger part to
explain variance than talent (small effect). Hypothesis 2 is confirmed for
imt girls, but n-imt girls have more interests compared to the two groups
of boys on average, too.

internal- internal- external- external-
unstable stable unstable stable

s f s f s f s f
imt boys number 21 15 42 1 2 16 4 37

residua −.5 −1.0 .6 −.2 .8 .2 −.8 .6
imt girls number 19 18 23 1 0 10 6 20

residua .6 1.2 −.7 .2 −.9 −.2 .9 −.8
n-imt boys number 25 15 31 0 1 9 0 33

residua −8 −4 2.8 −2.5 −1.2 1.0 −2.4 1.0
n-imt girls number 38 21 10 13 6 5 12 27

residua .7 .4 −2.6 2.3 1.2 −.9 2.2 −.9

Table 2. Cross-tabs about descriptions of attributions of mathematical
success (s) and failure (f)

Table 2 shows attribution-data. As to attributions of success, hypoth-
esis 3a.1 cannot be confirmed or rebutted since the Fisher-test is not
significant (= 4.044, p = .243). In contrast, hypothesis 3a.2 was con-
firmed by a significant result (= 30.137, p < .001). Compared to n-imt
boys, n-imt girls more infrequently tend to internal-stable (−2.6 to 2.8),
but more often to external-stable (2.2 to −2.4) attributions as shown
by the standardized residua. With regard to attributions of failure, hy-
pothesis 3b.1 cannot be confirmed or rebutted because the Fisher-test is
not significant (= 3.656, p = .282), but hypothesis 3b.2 was confirmed
(= 19.882, p < .001). In comparison with n-imt boys, n-imt girls more
often tend to internal-stable attributions as shown by the standardized
residua (2.3 to -2.5).
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4. Design and results of the seond study

4.1. Theoretial frameworks and brief literature reviews

As already mentioned in 3.1., the applied conception of interest refers
to Prenzel, Krapp, and Schiefele (1986). More detailed, this relation is
characterized by (1) value-related, (2) affective, and (3) cognitive aspects.
Additionally, in accordance with current approaches on a multidimen-
sional structure of interests a distinction by subject-, context- and topic-
related interest was regarded (for a survey see Krapp, 2010). The first
two dimensions were summarized in the term of “mathematics interest in
the classroom” because it cannot be expected that primary school chil-
dren differ between activities and contexts applied in classrooms (see also
Hellmich, 2006). The third dimension is referred to by the term “math-
ematics interest beyond the classroom”. In addition to the findings that
have been reported in 3.1., boys more often show stronger mathematics
interest both in and beyond the classroom, though children at primary
school age do not differ between these aspects in large part (Hellmich,
2006). However, current studies do not focus on gender-, giftedness- or
talent-specific aspects in this context. Furthermore, there are only a very
few studies with a focus on ability-related mathematics interest. Their
findings indicate, that lower achievement students’ mathematics interest
exceeds that one of higher achievers (Frenzel et al., 2010), but these stud-
ies do not focus on gifted or talented students. Finally, an often reported
phenomenon is a decline of mathematics interest over the years of adoles-
cence (Fredricks & Eccles, 2002), which is of little importance at primary
school age.

The construct of attitudes focuses on an evaluation of objects which an
individual imagines or perceives in his or her environment. Attitudes can
be explicitly and consciously accessed or they can emerge implicitly and
spontaneously influencing an individual’s behavior in both cases (Bohner,
2003). The conception applied in the study refers to the classical oper-
ationalization consisting of (1) cognitive, (2) affective and value-related,
as well as (3) behavior-related components (Aronson, Wilson & Akert,
2004). Generally, studies indicate that male students more often show
advantageous characteristics of mathematics attitudes than female stu-
dents (Hyde et al., 1990). As to the cognitive aspect, studies primarily
focus on individuals’ assessments of usefulness and difficulty of mathe-
matics. While there seem to be no gender – or talent-specific differences
between imt and n-imt children regarding usefulness (Benölken, 2011),
some studies indicate that mathematically gifted boys and girls as well
as non gifted boys ascribe mathematics a lower level of difficulty com-
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pared to non gifted girls (Wieczerkowski & Jansen, 1990). Finally, there
are findings about gender stereotypes: The older girls are the more they
ascribe mathematics to males (Newton & Newton, 1998), which seems
to be less important at primary school age since such differences mostly
appear from an age of ten. Concerning the affective aspect, results on
gender- or giftedness- respectively talent-specific differences of individu-
als’ intrinsic values (like enjoying mathematical task solving) seem to play
the most important role: Similar to characteristics of the assessment of
mathematics’ difficulty, some studies indicate that mathematically gifted
boys and girls as well as mathematically non gifted boys show a higher in-
trinsic value doing mathematics compared to mathematically non gifted
girls (Wieczerkowski & Jansen, 1990), while other studies report that
boys ascribe mathematics a higher intrinsic value than girls in general
(Bos et al., 2012). In regard to the behavior-related aspect, boys seem to
engage in mathematics beyond mathematical school lessons more often
than girls (Schiepe-Tiska & Schmidtner, 2013).

4.2. Questions

The following hypotheses were deduced from the theoretical findings:
(1a) Imt girls and boys as well as n-imt boys show a stronger mathematics
interest in the classroom than n-imt girls. (1b) Imt girls and boys as well
as n-imt boys show a stronger mathematics interest beyond the classroom
than n-imt girls. (2) Imt girls and boys as well as n-imt boys show more
advantageous mathematics attitudes than n-imt girls.

4.3. Design

The study adds to previous research on the significance of motiva-
tional factors as determinants for the identification of mathematical talent
using questionnaires that are appropriate to primary school children and
that can be completed in a short time (cf. 3.3.). Operationalizations of
mathematics interest in and beyond the classroom as well as of attitudes
were tested within pilot studies.

4.4. Sample and proedure

The sample contains N= 162 children of the third and fourth grade
(71 f, 91 m). The subsample of imt children is n = 83 (32 f, 51 m). Chil-
dren who are assessed to be “imt” take part in the project “math for small
pundits” (cf. 3.4.). The sample contains n=79 n-imt primary school chil-
dren (39 f, 40 m) from common classes. The probands were questioned
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during the school year of 2014/2015. All procedures of questioning were
consistent: The children were told how to fill in the questionnaire. In this
context, possible differences between mathematics interest in and beyond
the classroom were emphasized (cf. Benölken, 2015). The children com-
pleted the questionnaire on their own without any time limit (no one took
more than ten minutes and no one refused to fill in the questionnaire).

4.5. Method

Apart from declaring sex, the questionnaire was anonymized. In order
to measure mathematics interest in the classroom by a value-related, an
affective and a cognitive aspect, the following instruction was given: “This
is about mathematics in the classroom. Mark with a cross a statement
that is proper to you: (1) Mathematics in the classroom is really impor-
tant to me. (2) I always look forward to mathematics in the classroom.
(3) I am interested in mathematics in the classroom”. An analog instruc-
tion was composed to collect data about mathematics interest beyond the
classroom (cf. Benölken, 2015). To measure attitudes by cognitive, affec-
tive and behavior-related aspects, the following instruction was given:
“Mark with a cross a statement that is proper to you: (1) Mathematical
tasks are sometimes too difficult. (2) I enjoy doing mathematics. (3) I en-
gage in mathematics beyond mathematical school lessons”. To evaluate
the items in each case a four-step Likert-scale was offered (“that’s not cor-
rect”, “that’s almost not correct”, “that’s almost correct”, “that’s correct”;
instead, the children could choose “I don’t know”; cf. 3.5.).

4.6. Evaluation

Statements about all items except the cognitive attitudes one were
translated into numbers from 1 (“that’s not correct”) to 4 (“that’s cor-
rect”). As to the cognitive attitude item, the assignment was turned
around: For instance, “that’s not correct” was translated into 4 and “that’s
correct” into 1, because statements that focus on a low level of math-
ematical tasks’ difficulty seem to reflect advantageous characteristics of
attitudes. Regarding the mathematics-interest-in-the-classroom-scale, the
coefficient of correlation as defined by Pearson between the included items
moves in a range from .366 to .475 (with p<.01 in each case) and the in-
ternal consistency is only just acceptable (Cronbachs α = .680). As to the
mathematics-interest-beyond-the-classroom-scale the coefficient of corre-
lation as defined by Pearson between the included items is in a range
from .378 to .576 (with p < .01 in each case) and the internal consistency
is between acceptable and good (Cronbachs α = .731). Finally, the coeffi-
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cient of correlation as defined by Pearson between the included attitudes
items moves in a range from .334 to .617 (with p < .01 in each case) and
the internal consistency is between acceptable and good, too (Cronbachs
α = .710). The evaluation was conducted analogically to the evaluation of
self-concepts and sum of interests within the first study by an analysis of
variance with the two factors “talent” and “sex” (cf. 3.6.; the requirements
of the used statistical procedure are discussed by Benölken, 2015).

4.7. Results

mathematics interest mathematics interest
in the classroom beyond the classroom
boys girls boys girls

imt children 3.07 (.83) 2.89 (.51) 3.39 (.70) 3.37 (.48)
n = 51 n = 32 n = 51 n = 32

n-imt children 3.30 (.76) 2.65 (.72) 3.33 (.79) 2.74 (.55)
n = 40 n = 39 n = 40 n = 38

Table 3. Averages (standard deviations) of mathematics interest-
statements

Table 3 shows data of mathematics interest-statements. As to math-
ematics interest in the classroom, there is no significant main effect on
talent (F (1, 158) < .001, p = .990, η2 < .001), but there can be found a
significant main effect on sex (F (1, 158) = 12.795, p < .001, η2 = .075)
as well as a significant effect of interaction (F (1, 158) = 4.139, p = .044,
η2 = .026). As indicated by η2-values, sex (medium effect) plays a bigger
part to explain variance than the interaction (medium effect). Thus, the
boys’ groups, especially the n-imt boys, show a stronger mathematics in-
terest in the classroom compared to the girls’ groups, but as indicated by
the significant effect of interaction, imt girls are more similar to the boys’
groups than to the n-imt girls who show a lower mathematics interest in
the classroom on average compared to all other groups. Therefore, the
statistical evaluation confirms hypothesis 1a in principle.

As to mathematics interest beyond the classroom, there are significant
main effects on talent (F (1, 157) = 10.579, p = .001, η2 = 063) and sex
(F (1, 157) = 8.435, p = .004, η2 = .051) just as there is a significant
effect of interaction (F (1, 157) = 7.579, p = .007, η2 = .046). Talent
(medium effect) and sex (medium effect) play a similar role to explain
variance. Thus, imt children and n-imt boys show similar characteristics
of mathematics interest beyond the classroom which is stronger compared
to n-imt girls, and hypothesis 1b is confirmed. In addition, a descriptive
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data analysis of all groups’ mean values indicates that only imt children
seem to differ between mathematics interest in and beyond the classroom.

boys girls
imt children 3.32 (.58) 3.11 (.60)

n = 51 n = 32
n-imt children 3.03 (.78) 2.23 (.76)

n = 40 n = 39

Table 4. Averages (standard deviations)
of mathematics attitudes-statements

Table 4 shows data of mathematics attitudes-statements. There are
significant main effects on both talent (F (1, 158) = 29.023, p < .001,
η2 = 155) and sex (F (1, 158) = 21.550, p < .001, η2 = 120). Finally, there
is a significant effect of interaction (F (1, 158) = 7.597, p = .007, η2 =
.046). Talent (strong effect) and sex (medium effect) play a similar role to
explain variance, even though the talent effect is stronger. Thus, attitudes
of imt children are more advantageous compared to n-imt children, but
n-imt boys merely differ a little from the imt children. The statistical
evaluation confirms hypothesis 2.

5. Disussion

In this article the significance of self-concepts, interests’ number, at-
tributions, mathematics interest – by a distinction between in and beyond
the classroom – and attitudes as determinants in order to identify math-
ematical talent at primary school age was investigated by a comparison
of frequent characteristics with boys and girls who were identified to be
mathematically talented (imt) as well as with boys and girls who were
not (n-imt). Based on literature reviews, hypotheses on the mentioned
characteristics were deduced: It has to be expected that (1) imt children
and n-imt boys show more advantageous characteristics of the regarded
motivational factors than n-imt girls, and (2) imt girls have more in-
terests than all other groups. The hypotheses were investigated by two
questionnaire studies. The statistical results confirm the assumptions in
principle (though, e.g., girls in general seem to have more interests than
boys). Thus, the results are very similar to existing findings focusing on
“giftedness” (e.g., as to the number of interests similar to Kerr, 2000).
With regard to mathematics interest in and beyond the classroom, only
imt children seem to differ between these dimensions showing stronger
interest beyond the classroom, while n-imt children took similar stances
in both cases (which could explain the results of Hellmich, 2006).
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As to the significance of the regarded motivational factors as deter-
minants in order to identify talent, the results indicate that more advan-
tageous characteristics can be found independently of the identification
of talent more often with boys, while imt girls are very similar to these
groups. This might cause more efficient diagnostics of boys’ talents, be-
cause they might tend to a strong preoccupation with mathematics or
teachers might perceive their potentials primarily. By contrast, disad-
vantageous characteristics might cause that children do not develop a
stronger preoccupation with mathematics and, e.g., turn to different in-
terests. This might also apply to children who have a high potential that
might be more difficult to identify. Though the findings are not suitable
to predict how the regarded motivational factors can be characterized
with talented but not identified girls, the results imply the thesis that
disadvantageous characteristics are important aspects effecting a more
infrequent identification of talent with girls. In addition, motivational
factors have to be seen in a strong interdependence with, e.g., influences
of socialization or gender-specific preferences in solving tasks (Benölken,
2011).

As to limitations of the studies and subsequent research, the under-
representation of girls in the imt samples has to be discussed: Because of
the rare identification of mathematical talent with girls, it takes a long
time to compose suitable subsamples. Though the size of all subsamples
is sufficient in principle, subsequent studies should enlarge all subsamples
and ensure a balance. The diagnostics procedures of talent identification
that are used to compose the imt subsample are established for many
years. Thus, “imt” children most probably are rightly assessed in that
way. In addition, there might be motivational effects caused by their par-
ticipation in “math for small pundits” that cannot be found with children
who have high potentials, but who are not taking part in such a program.
Finally, the subsamples of n-imt children are nothing more than an insuf-
ficient image of population. Thus, the samples’ representativeness has to
be seen as limited. The questionnaires were adequate to the aims of the
studies in principle. They are suited for a pragmatic use in classrooms be-
cause their design is appropriate to children, and they can be completed
in a short time. However, the evaluation of the regarded motivational
factors depends on very simple measurements. The external validity of
the findings cannot be judged because tools that evidentially regard crite-
ria of quality were not applied (in favor of the appropriateness to young
children) and because the imt sample is very specifically composed. In
sum, the study has obvious limitations, and it rather has an explorative
character. Subsequent studies might focus on a deeper clarification using
established tools.
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As to exemplary practical consequences, first, any gender stereotyping
of mathematics has to be avoided. Second, the development of advanta-
geous motivational factors seems to be important in order to support
girls’ potentials to emerge. In this context, e.g., task-fields that are com-
posed especially to foster girls – without stereotyping – might be useful
(Benölken, 2013). The distinction between mathematics interest in and
beyond the classroom that was observed with imt children indicates the
need of a challenging education, e.g., by using enrichment tasks in com-
mon classes (Fuchs & Käpnick, 2009).
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Predition and self-evaluation as a part of the proess

of solving non-standard mathematial task

Abstrat. The experience obtained from solving the tasks of the
Mathematical Kangaroo in the category of primary school pupils
is a rich source of inspiration for the educational practice. In the
article, the process of solving Kangaroo tasks is described in the
context of the more general issue of meta-cognition. We present
the results of a research aimed at finding the level of prediction
and self-evaluation of performance by primary school pupils during
the process of solving a set of non-standard Mathematical Kanga-
roo tasks.

1. Introdution

The theory and practice of education confirm that the analysis of
pupils’ solutions of mathematical problems can be a useful instrument of
a more accurate, more meaningful assessment of pupils based on the thor-
ough knowledge of the pupils’ individuality (Hejný, Kuřina 2001, Kali-
nowska 2012, Dabrowski 2013). The solution of non-standard tasks thus
represents a possible source of data about the educational reality as well
as its reflection.

Many authors such as Schoenfeld (1992), Kopka (2007), Novotná
(2000), Fulier and Šedivý (2001) consider these non-standard tasks more
interesting, even though they are usually more difficult than the standard
routine tasks. They emphasize that non-standard tasks lead to discover-
ing, inventing, and finding new ways to solve a problem and thus develop
the cognitive abilities of pupils, and that the analysis of the pupils’ solu-

Key words and phrases: non-standard tasks, solution, prediction, self-evaluation,
elementary school pupils..
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tions of tasks from the Kangaroo competition can be a useful instrument
of a more complex assessment of the pupils’ individuality.

2. Theoretial bakground

In our research, we combine the solution of mathematical problems
with the more general issues of metacognition, i.e. ”the ability to reflect
one’s own processes of thinking and ways of improving one’s thinking”
(Sternberg, 2002, p. 215), as we believe that this relationship can be
scientifically rooted (Schoenfeld, 1992). We focus on the self-evaluation
and prediction of the pupils’ performance in the sense of the ”reflection
of an action” and label them as ”off-line” metacognition (Desoete et al.,
2001).

A number of cognitive processes that are necessary for successful so-
lution take place during the process of solving the tasks. When encoun-
tering difficulties during the process of solution, metacognitive processes
are used - Fisher (1997) speaks of metacognitive pupils who think about
their thinking and focus on the task, know what to do when they get
stuck, and are successful in using their strategies. Opinions vary both on
the levels of metacognition found among primary school pupils and on
how to develop the metacognitive processes of pupils.

One can rarely see research on the metacognition and self-regulation
of children so young, and their occurrence is not very elaborate, although
some authors – Perry, Drummond (2002), and Larkin (2000) - state that
pupils of primary-school age already achieve a certain level of metacog-
nition, meaning that they are able to plan, monitor, and evaluate their
own learning.

In our research, we were inspired by the research of Zgarbová (2011).
We focused on an attempt to investigate prediction and self-evaluation
as part of the solution of non-standard mathematical problems. The in-
ternational Math Kangaroo competition is coordinated by the Center
Association Kangourou sans frontières based in Paris. It is intended for
pupils aged 8-18. Every year, more than 3 million solvers register. In the
Czech Republic, there are annually approximately 300, 000 participants,
and in the Ecolier category, nearly 70, 000 pupils in 4th and 5th grade of
elementary school take part. The competition does not have any rounds
– on the same day, participants from more than 50 countries around the
world solve the same tasks in their respective age categories. Tasks are
classified into three levels of difficulty. The author of this paper is the
guarantor of the Ecolier category in the Czech Republic and the Czech
version of the competition tasks for that category. For more details about
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the organization of the competition, its history, and the competitive tasks
in individual years, see the international or Czech website of the compe-
tition.

3. Objetive, researh method and tools

The aim of our research was to identify the level of ”off-line” metacog-
nition (i.e., the prediction rate and level of self-evaluation) of the pupils
in 4th and 5th grade and to determine whether it depends on their suc-
cess in solving non-standard mathematical problems. We assumed that
students successful in solving problems achieve a significantly higher pre-
diction rate and level of self-evaluation than the unsuccessful students.
When formulating research questions and hypotheses, we operationalized
the variables of the research:

a) The pupils’ performance as the success rate of solving non-standard
mathematical problems: the total number (sum) of points from the
solution of the competition test consisting of 10 tasks. The correct
answer was evaluated at 2 points, partially correct at 1 point, in-
correct or missing answer at 0 points. Each respondent could amass
20 points. Based on their success rate, the solvers were divided into
successful (20-10 points) and unsuccessful (9-0 points),

b) The prediction rate of pupils related to the solution of non-standard
mathematical problems, i.e. the comparison of the perceived ability
and the actual performance (max. 20 points),

c) The level of the pupils’ self-evaluation, i.e. the comparison of the
subsequent perception of success in solving problems and the actual
performance (max. 20 points).

As the basic research technique, we used a didactic test consisting of
10 tasks, which included questions aimed at identifying the prediction
rates of pupils and their levels of self-evaluation. The Ecolier tasks were
subsequently adapted into open test items. Each task has exactly one
correct solution. We selected tasks of lower difficulty levels: 8 tasks rated
in the competition at 3 points and 2 tasks at 4 points. The factor that
unifies the diversity of the content of the tasks (tasks requiring arith-
metic calculations, the concept of fractions as parts of a whole, a task
requiring space orientation skills) and the method of presentation (word
or text supplemented by image, contextually defined - as a result of the
mathematization of the real situation) was their non-standard character.
The test was identical for pupils in both 4th and 5th grade of elementary
school (aged 10− 11 years).
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Instructions for pupils:
This test contains 10 non-standard mathematical tasks from the pre-

vious years of the Mathematical Kangaroo competition. Its aim is to
find out whether you can solve these tasks. Please complete the test in
following way:

1. In the test, you will find mathematical problems. Read all the tasks
from 1 to 10, but do not try to solve them yet.

2. Prediction: Try to estimate whether you are able to solve each task.
Tick your prediction for every task. Move from task 1 to task 10.

3. Solution: Now, try to solve the tasks. Under the wording of each
task, write your solution. You can take a blank piece of paper for
your notes.

4. Self-evaluation: Finally, tick the answer in the table indicating how
you think you solved each task. Proceed again from task 1 to task
10.

Here are two examples of the tasks:
a) Soňa threw a die four times and she obtained a total of 23 spots.

How many times did she get 6 spots?
b) Below, six coins form a triangle. You have to move some coins to

place them in a circle, as you can see in the second picture. How
many coins must be moved at the very least?

Figure 1. Task. AAg

To each task in the test, one question has been connected with predic-
tion and another with self-evaluation, which made a total of 10 questions
examining the degree of prediction and self-evaluation each.

When evaluating the degree of prediction and self-evaluation, we did
not take into account the sum of points ticked by the pupils on the scale
(i.e., their subjectively perceived value), but the real measure of their pre-
diction and self-evaluation. This means that we compared the prediction
with their actual performance in solving the test tasks (separately for
each task). For example, if a pupil had estimated that he would solve the
task correctly and indeed he did, then the pupil was awarded 2 points.
If a pupil considered his correct solution only as probable and solved the
task correctly, then the pupil was awarded 1 point. When the pupil was
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sure that the task was correctly solved but did not solve it, there was no
point awarded. The relationship between the prediction and the actual
success of the pupil in the solution of the task (score prediction rate) is
described in Table 1.

Performance

Prediction Correct Incorrect or
solution no solution

I will definitely solve the task correctly 2 0
I will likely solve the task correctly 1 0
I will likely not solve the task correctly 0 1
I will definitely not solve the task correctly 0 2

Table 1. Relationship between prediction and actual performance of
pupil.

Analogically, we proceeded in terms of the relationship between the
pupil’s self-evaluation, made immediately after solving the problem, and
the real performance - the level of self- evaluation scores are given in
Table 2:

Performance

Self-evaluation Correct Incorrect or
solution no solution

I definitely solved the task correctly 2 0
I likely solved the task correctly 1 0
I likely did not solve the task correctly 0 1
I definitely did not solve the task correctly 0 2

Table 2. Relationship between self-evaluation and actual performance of
pupil.

The survey was conducted on a set of 204 pupils of 16 primary schools
in four regions of the Czech Republic (random choice) in November 2014.
The research focused on two grades (4th and 5th) of each participating
school. The sample consisted of 54 pupils aged 9 years (26.9%), 109 pupils
aged 10 years (53.4%), and 41 pupils aged 11 years (20.1%).

The obtained data have been processed via a quantitative method-
ological approach. The graphic depiction (tables and bar charts) and posi-
tion characteristics calculation were applied when referring to descriptive
nature of data.



[288℄ Eva Nováková

4. Findings and disussion

In our research, we found a low level of success of solving non-standard
tasks - an average of 8.39 percentage points (i.e., only 4 successfully solved
task out of 10). Only 6 solvers (2.94%) correctly solved all 10 problems,
and 9 solvers (4.41%) were not able to correctly solve any problem. One of
the causes of this, which we consider alarming, we see largely in the fact
that the solutions required the verbal understanding of the formulated
open test tasks. The correct solution is not based on a calculation routine,
but rather requires a clear insight into the situation in the task and the
application of mathematical abilities. It is also a known fact that many
teachers, for various reasons, prefer using standard algorithmic problems
(Novotná, 2000, Rendl et al., 2013). The results of the research seem to
confirm the view reflecting the previous experience during an educational
practice in primary school – the solution of non-standard problems is not
a usual and frequent activity in mathematics classrooms. As it is apparent
from some studies (Swoboda, 2014), this finding applies generally, and not
only for a typical situation of Czech education.

Descriptive Statistics

N Mean Minimum Maximum
Successful 81 13.80 10 20
Unsuccessful 123 4.92 0 8
Total 204 8.39 0 20

Table 3. Success rate of non-standard task solution.

When we look at the sub-processes of metacognition, i.e. the predic-
tion rate and level of self-evaluation on the sample of all respondents, we
find that the values are aligned and relatively low. The overall level of
prediction was 8.04 points from a total of 20 points and the overall level
of self-evaluation amounted to 8.85 points from a total of 20 points.

In the group of successful pupils (10 or more points gained), the
average performance was 13.80 points, prediction 9.16 points, and self-
evaluation 10.38 points. In the group of unsuccessful pupils, significantly
lower average values were achieved: performance 4.92 points, prediction
7.23 points, and self-evaluation 7.89 points. Successful pupils achieved sig-
nificantly higher levels of prediction rate as well as levels of self-evaluation
than unsuccessful pupils. The differences are statistically significant. We
conclude that students successful in mathematics, who have higher levels
of mathematical ability and prove this by solving non-standard tasks, are
also able to predict and objectively evaluate their performance.
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Descriptives

N Mean
Std. Std.

Minimum Maximum
Deviation Error

Successful 81 9.16 3.219 .569 4 18
Unsuccessful 123 7.23 2.779 .170 2 16
Total 204 8.04 3.169 .114 2 18

Table 4. Overall level of prediction.

Descriptives

N Mean
Std. Std.

Minimum Maximum
Deviation Error

Successful 81 10.38 3.621 .500 3 18
Unsuccessful 123 7.89 2.828 .166 2 16
Total 204 8.85 3.415 .122 2 18

Table 5. Overall level of self-evaluation.

The relationship between the prediction and self-evaluation of pupils,
and their success in solving problems is evident from graphs 1 and 2:

Graph 1. Relationship between the prediction and self-evaluation of successful
pupils.
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Graph 2. Relationship between the prediction and self-evaluation of unsuccessful
pupils.

Our findings largely correspond to the conclusions of the aforemen-
tioned research of Zgarbová (2011).

We can indirectly conclude that the school does not focus on how
to teach students to think and to learn. Planning, monitoring and self-
evaluation can have a big impact on the pupil’s success at school. How-
ever, pupils have little experience with this metacognitive approach (Zgar-
bová, 2011, p.128).

The structure of the research also allows to observe the prediction,
performance, and self-evaluation of particular pupils, both generally as
well as in detail, regarding a particular task.

The pupils’ solution of the two tasks:

Picture 1. Vojta’s solution.

In the task, Vojta got 2 points for prediction and 2 points for self-
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evaluation. In this case, it means that in the prediction, Vojta chose the
possibility I will definitely solve the task correctly, and he solved the task
correctly. His self-evaluation was I definitely solved the task correctly, and
indeed he did. This is the reason he got 2 points for both (prediction and
self-evaluation).

In the whole test, Vojta got 10 points for prediction, 11 points for
self-evaluation and 14 points for his performance.

Picture 2. Jana’s solution.

In this task, Jana got 0 points for prediction and 0 points for self-
evaluation. In this case, it means that when predicting, Jana chose the
possibility I will likely solve the task correctly, but she did not. Her self-
evaluation was I likely solved the task correctly, but she was not correct. In
whole test, Jana got 7 points for prediction, 10 points for self-evaluation,
and 2 points for performance.

The Mathematical Kangaroo tasks are suitable for the employment of
prediction as well as self-evaluation. Pupils start the test with 24 points.
Each incorrect answer leads to the loss of 1 point, and correct answers add
the respective amount of points based on the difficulty (3, 4, 5 points).
There is a time limit for the solution of the test. Pupils apply prediction
after reading the task wording when evaluating whether to start to solve
the task or for some reason, e.g. because it is too difficult or too time
consuming, to skip to another task. Self-evaluation also has its place in
the competition. When a pupil solves a task, a decision must be made
of whether it is the correct solution, because only then it makes sense
to state it in the list of results. Obviously, the uncertainty regarding the
correctness is not taken into consideration here (I likely solved the task
correctly, I likely did not solve the task correctly), but in any case, pupils
still have the choice of not stating the answer at all.
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5. Conlusion

In the article, we attempted to use the tasks from the previous years
of the Mathematical Kangaroo competition to suggest one possible ap-
proach to the prediction and self-evaluation of the performance of pupils
in primary schools.

We did not analyze the impact of other potential variables that could
influence the success of solving problems, the prediction rate, or the level
of self-evaluation: the personal characteristics of the respondents – gen-
der, mathematics grade, or the popularity of the subject, neither did we
consider the types of tasks, their difficulty, theme, nor the type of task
instruction. Some of these factors, in relation to the successful solution
of the problem, have been the subject of more widely designed research
of Kubátová (2005).

The features of our probe or sample size of respondents does not allow
for unambiguous categorical judgments. However, the findings can be, in
our opinion, definitely considered an impulse and an inspiration not only
for primary school teachers.
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Career onstrution in the mathematis lassroom:

using an integrated, qualitative + quantitative

approah to enhane learners' sense of self

Abstrat. Career Construction Counselling and Self-Construction
Counselling aim to help learners script their career-life stories. This
approach is suitable for exploring personal meanings and for help-
ing learners deal with many of the problems involving meaning. The
aim of the paper is to demonstrate the implementation of an inte-
grated, qualitative+quantitative approach in career counselling in
combination with a parallel approach in mathematics to elicit and
harness the learners’ reflection and facilitate reflexivity, enhance
their sense of self and, ultimately, enable them to participate more
actively in their career and self-construction and in the writing of
their emerging career-life stories. Ten practical principles for fa-
cilitating self-construction (previously referred to as optimization
of potential/self-actualization in mathematics classrooms) are dis-
cussed. These principles can promote not only better achievement
in mathematics but, more importantly, enable learners to construct
themselves adequately and design successful lives that will enable
them to make useful social contributions. It is concluded that draw-
ing on an integrated, qualitative + quantitative approach in math-
ematics classrooms holds much potential to enable the learners in
a variety of contexts to improve their mathematical performance
and, more importantly, help them to make and execute informed
decisions about their career-life journeys.

Key words and phrases: Career counselling, the implementation of an integrated,
qualitative + quantitative approach in career counselling and mathematics, achieve-
ment in mathematics, mathematical performance, career construction, sense of self,
career-life stories.
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In psychology fresh winds are blowing . . . picking up and
juxtaposing separate ideas to produce novel combinations

(Tyler, 1978, p. 1)

Introdution

The world of work is changing more rapidly today than ever before
– many careers are disappearing, and new ones are taking their place
virtually daily. Predicting career journeys is consequently becoming in-
creasingly difficult. In the United States of America (USA), for instance,
people are changing jobs more or less once every four and a half years and
often have 10 to 15 jobs before they reach the age of 38 (Vecchio, 2013).
Finding suitable employment is also more problematical today than pre-
viously. Whether we are responding adequately to fundamental changes
in the field of ICT (information communication technology; fifth wave
of information – also known as the digital revolution (Gurri, 2013)), the
4th Industrial Revolution, the global economy, and the world of work is
a question that needs to be asked (Maree, 2015).

We as mathematics teachers need to rethink our theory and practice
continually in order to help learners deal with the challenges stemming
from the sweeping changes in the world of work and to survive in a world
characterized by uncertainty in the workplace. Teaching, learning, psy-
chology, and career counselling theories are not static as every forty to
fifty years theoretical paradigms tend to reach the limit of their relevance
and usefulness (Savickas, 2011). We therefore need to consider whether
psychology and mathematics have responded appropriately and timeously
to the changes in the world in general, in society (including the social or-
ganization of work), and in the economy. A brief review of the teaching
and learning theories that have guided teaching and learning in math-
ematics over the past 100 years reveals that theorists and practitioners
have repeatedly shifted backwards and forwards between theoretical mod-
els such as the ‘traditional model’, cognitivism, information processing,
and a number of variations broadly based on a constructivist approach
(e.g. (social) constructionism).

Much can be learned from recent developments in career counselling
whose orientation has shifted from overly ‘positivist’ to ‘positive’ dur-
ing the past few decades. This major paradigm shift can be attributed
largely to the tireless efforts of Savickas (2011) who merged the person-
environment fit (differential) paradigm with the developmental and narra-
tive/ psychodynamic/ storied paradigms resulting in a true meta-theory,
referred to as career construction counselling. Savickas also devised an
associated assessment and intervention strategy known as the career con-
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struction interview. In doing so, he changed the course of career coun-
selling and demonstrated the value of an integrated, quantitative + qual-
itative approach as opposed to a quantitative approach in relative iso-
lation. Career construction counselling and self-construction counselling
are premised on the view that it is better to help learners script their
career-life stories rather than testing them and telling them what career
to choose.

This is important for the psychology of mathematics as it is gener-
ally accepted that mathematics is the pre-eminent gateway subject for
selection to tertiary studies. Ernest (2015) contends that “mathematics
is a dynamic, growing modern city and not a skyscraper” and that learn-
ers should be equipped in mathematics classrooms with the skills needed
to deal with the changes outlined above. This paper therefore argues
that the implementation of an integrated, qualitative+quantitative ap-
proach in career counselling, in combination with a parallel approach in
mathematics to elicit and harness learners’ reflection and reflexivity, can
enhance their sense of self and, ultimately, enable them to participate
more actively in career and self-construction and in the writing of their
emerging career-life stories.

Researh Questions

The main research questions in my study were:
a. Do we, as mathematics teachers adequately reflect on, learn from,

and build on our past endeavours?, and
b. How can mathematics teachers best convert the challenges brought

about by global changes into opportunities to solve the problems
of a rapidly changing world?

Aim of the Paper

This paper:
a. considers the meaning of an integrated, qualitative+quantitative

approach to learning facilitation in mathematics classrooms and
lecture halls, and

b. elaborates on the importance of using career construction in math-
ematics classrooms to enhance learners’ and students’ sense of self.

Researh Design

In my study, I followed a meta-theoretical approach by drawing on the
results of previous studies. Since no systematic cataloguing of research in



[298℄ Jaobus G. (Kobus) Maree

the psychology of mathematics had been done, the research was based on
a qualitative analysis of scientific texts. Firstly, a literature review was
undertaken of various research projects conducted by the author of this
paper and his colleagues during the past few years (e.g., Steyn & Ma-
ree, 2002; Maree, Molepo, Owen & Ehlers, 2005; Maree & Eiselen, 2007;
Van der Walt & Maree, 2007; Maree, Van der Walt & Ellis, 2010; Maree,
Fletcher & Sommerville, 2011; Maree, Lombard, Fletcher & Sommerville
(ongoing)). The articles and reports that flowed from the research were
considered narratives, and the approach was seen as an alternative re-
search method. Secondly, discourses between the researcher and various
participants were analysed and interpreted. In terms of this approach
(discourse analysis), the problem-saturated narratives were also analysed
and placed in context. I endeavoured to show the connection between var-
ious studies, and I also proposed a number of theoretical and intervention
approaches.

Meta-Theoretial Framework

I believe Boboc (2011) is correct in saying that it is essential to rec-
oncile the pétit récit (‘small story/narrative’) and the grand récit (‘big
story’) by focusing on the bigger picture (Boboc, 2011). In other words,
we as mathematics teachers should respond to challenges by basing our
practice on a conceptual framework that can inform and shape our ac-
tions. I believe we should base our practice on the following sextet of
T’s, which will help mathematics teachers “control the controllables” and
“resolve the resolvables” in mathematics classrooms.

a. Teacher (training)
b. Teachee (learner)
c. Teaching and learning
d. ParenT
e. Textbook
f. Teaching time.
Our practice should be guided by the following simple principles:
a. Teachers must teach; learners must learn (obvious as this may

sound).
b. ‘Best practice’ in mathematics classrooms can best be facilitated

by moving from a ‘positivist’ approach towards a ‘positive’ ap-
proach to teaching and learning in mathematics.

c. Teaching should be considered a value-driven activity, and recipro-
cal respect, punctuality, and self-discipline should be displayed at
all times.
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Some Thoughts on `Transgression'

I share the view of the organisers of this ground-breaking conference
on the importance of enabling learners to ‘transgress’ (in other words,
transcend generally accepted boundaries) when they attempt to master
mathematics and use mathematics to create better lives for themselves
and for others. Sarrazy (2015) contends that today’s learners will have to
re-invent the world of tomorrow and go beyond what they learn today if
they are to survive in the 21st century. He adds that learners should be
allowed the experience of transgression as it will be difficult for them to
excel if they have never had the opportunity to experience how it feels to
move beyond obvious boundaries in the mathematics classroom.

From Theory to Pratie and from Pratie to Theory

I concur with Savickas (2009) that theory follows practice and vice
versa and with Schoenfeld (2015) when he says that mathematics teachers
can regard themselves as successful only if they can effectively cover the
following in their classrooms.

a. Mathematical content;
b. Cognitive demand;
c. Access to mathematical content;
d. Agency, authority, and identity;
e. Uses of assessment period.
However, I believe that a sixth and a seventh dimension should be

added to the list, namely promotion of emotional stability and volitional
robustness in mathematics learners.

In the next subsection of this paper, I discuss ten practical principles
for facilitating self-construction (Savickas, 2011) (previously referred to
as optimization of potential/self-actualization (Maslow, 1983)) in mathe-
matics classrooms. These principles can promote not only better achieve-
ment in mathematics but, more importantly, enable learners to construct
themselves adequately and design successful lives that will enable them
to make useful social contributions.

Priniple 1: Move from intention to ation (Savikas, 2009)

Mathematics teachers should move
a. from being reactive to pro-active,
b. towards facilitating ‘best practice’ in one-on-one settings AND in

group contexts,
c. towards optimizing communication, creatively combining
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i. electronic/mobile (SMS, cell phone, WhatsApp) communication,
ii. social communication media,
iii. paper-based communication,
iv. workshop-style communication, and
v. one-on-one communication.

Priniple 2: Failitate refletion

Reflection should occur during every mathematics class, including
a. reflection-in-action (during teaching),
b. reflection-on-action (after teaching), and
c. reflection-for-action (for teaching) (Farrell, 2004; Killion & Tod-

new, 1991).

Priniple 3: Failitate reflexivity

The aim of reflection (looking back on learners’ thoughts and actions)
is to facilitate reflexivity on their part (planning for the future).

Priniple 4: Learn from and build on the past

Teaching and learning in mathematics has switched between various
philosophies and the practical application of theoretical models, including
discovery learning as well as learner-, teacher-, subject-, and variations of
problem-centred learning. Also, education authorities often include mod-
ules in learning programmes only to remove them at a later stage when
shortcomings become evident in their implementation. A case in point
was the overhasty, politically driven introduction of an outcomes-based
approach to teaching and learning in mathematics in South Africa. The-
orists and practitioners should learn from their mistakes and take steps
to prevent the recurrence of the same mistakes.

Priniple 5: Help learners understand the importane of dealing with unfair

relationships in eduation and soiety

I agree with Ernest’s view (2015) that mathematics personifies open-
ness, equality, fairness, and justice, which is sufficient motivation for us
to teach the ethics (and philosophy) of mathematics in every classroom
and during every class.
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Priniple 6: Help learners reognize opportunities (not only solve problems)

In the 21st century, learners are offered employment on the basis of
their ability to generate ideas and make the ordinary extraordinary. It
is therefore our task to teach them to think innovatively and creatively.
Wittmann (2015) elaborates on this notion by arguing that ‘productive
practice’ should characterize all mathematics classes. In other words, it
is essential to integrate the practicing of skills in mathematics classrooms
with the exploration, examination, and investigation of mathematical
problems.

Priniple 7: Instil a positive attitude and hope for the future in learners

Research suggests that learner achievement is enhanced if learning
takes place in an environment of positive expectations engendered by
lecturers, parents, and role models (McIlveen & Midgley, 2015; Neault,
2013).

Priniple 8: Shift the fous from the individual learner to the group

This recommended action is consistent with Schoenfeld’s (2015) view
that the time has come to shift from focusing on individual learners’
thinking only and, rather, consider the dynamics of the classroom as a
whole.

Priniple 9: Failitate emotional-soial intelligene (ESI) skills (Goleman,

1996)

It should be noted first of all that ESI can be acquired and developed
(improved). Learners can be taught to retain or discontinue using par-
ticular adaptive coping strategies depending on situational demand. ESI,
including self-motivation, the ability to persevere in the face of failure,
the ability to postpone immediate needs satisfaction in order to satisfy
long-term needs, and the ability to hope and to prevent sorrow, concern,
and anxiety from interfering with thought processes. The importance of
acquiring acceptable ESI is borne out by findings that confirm that ESI
is a far better predictor of achievement and success than mere IQ or ap-
titude. Pieronkiewicz (2015), too, argues that the importance and power
of affective transgression integrated with cognitive transgression cannot
be denied.
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Priniple 10: Failitate narration/disourse/dialogue in mathematis lass-

rooms

In addition to assessing learners ‘quantitatively’ and devising pro-
grammes to address challenges (shortcomings or problems) uncovered by
these assessments, it is essential also to focus on qualitative ways of uncov-
ering challenges and dealing with them. This can be achieved by using
questionnaires, facilitating immediate feedback from and reflection by
learners, facilitating meta-cognitive thinking and action (executive be-
haviour) on their part, and by using reflective journals in mathematics
classrooms.

Conlusion

Mathematics teachers should exploit change to advance positive teach-
ing and learning in mathematics – the ultimate aim of theory and praxis
in the field. It seems clear that an integrated, qualitative+quantitative
approach in mathematics classrooms can help learners in a variety of con-
texts improve their mathematical performance and, more importantly,
help them make and execute informed decisions about their career-life
journeys. In other words, help them go beyond generally accepted per-
ceived boundaries in mathematics classes.
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Applying ognitive load theory in mathematis

eduation

András Ambrus

Abstrat. To characterize the quality of mathematics education in
a country is not an easy task. The high quality of mathematics
education in Hungary has often been assumed, due to Hungary’s
tradition of producing world-famous mathematicians. For exam-
ple, outside of Hungary, one often hears, “Hungarian mathematics
problem-solving teaching is world-famous thanks to George Pólya”,
and contributions of other excellent Hungarian mathematicians,
such as J. Neumann, P. Halmos, E. Szemerédi and L. Lovász, are
often noted. While it is true that Hungary has produced many
great mathematicians, the author’s premise is that this does not
establish the general quality of Hungarian mathematics teaching,
or imply that it cannot be improved. On the contrary, the author
believes that mathematics education in Hungary can be improved.
To evaluate this premise, I analyse the results of Hungarian stu-
dents who took the international PISA 2012 mathematics test, as
well as two national tests of grade 12 students and the mathemat-
ics proficiency of new college entrants. Based on the results, this
article asks: How can we prepare these students for success in their
mathematics studies and their future jobs more effectively? Based
on the human cognitive architecture and cognitive load theory, my
hypothesis is that “opening” mathematics problems and providing
more guidance would amount to two steps toward this important
goal. After some theoretical considerations, I analyse some of the
students’ performance during the experimental trials of this idea,
and suggest some steps toward successfully implementing it to more

Key words and phrases: mathematical problem solving, cognitive architecture,
cognitive load theory, open problems.
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effectively teach the fundamentals of mathematics problem-solving
to students in Hungary. Finally, I summarise my conclusions.

1. Charateristis of hungarian mathematis teahing

The characteristics of current Hungarian mathematics teaching may
be the result, in part, of the views of three great Hungarian mathemati-
cians and educators. G. Pólya, the “father of heuristics“, made Hungarian
mathematics teaching strongly problem-oriented. Tamás Varga led the
“Complex Mathematics” reform movement in Hungary in the 1970s and
1980s. Finally, Z. Dienes stated the following, a motto of a mathematics
education conference in Eger, 2015: “In my opinion, it is an attainable
goal to build creative learning environments on all levels of mathematics
learning. If a child successfully developed a concept based on his(her) own
experiences, then he(she) created something that did not exist earlier for
him(her), and it got ingrained in his(her) psychological personality, just
like his(her) essential food materials are incorporated into his(her) body.
This piece of knowledge will have as much value for him(her) as painting
a picture, or writing a good story” (Dienes, 1999).

These great mathematicians and educators all supported discovery/
problem-based mathematics education, and made significant contribu-
tions both to the teaching of mathematics and mathematics research
in Hungary and the world. However, the effectiveness of the Hungarian
mathematics education system today is lagging. This may be one of the
reasons why J. Mason noted: “The much-vaunted Hungarian mathemat-
ics teaching [system] has not spread significantly into the mainstream”
(Mason, 2013).

The effectiveness of the Hungarian mathematics teaching philosophy
and system can be debated, but objective indicators of the system’s effec-
tiveness are indicated by the Hungarian students’ performance on recent
international and national achievement exams.

On the international PISA 2012 Mathematics test, out of 65 country
participants, Hungary ranked in 39th place, with an average of 477 points
(OECD average was 494 points). Only 9.3% of Hungarian students at-
tained the top rating of 6 and 28.1% of Hungarian students were rated at
lower levels 2 or 1. On the PISA 2012 Creative Problem Solving test, out
of 44 country participants, Hungary ranked 33rd and 35% of Hungarian
students were rated at lower levels 2 or 1. Hungary has always partici-
pated in PISA tests right from the beginning, usually achieving OECD
average results, but these latest results show a decline.
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On the two national tests of upper level mathematics proficiency, the
Hungarian students’ performance has been similarly below average.

The first national test is the mathematics central maturity exam,
which is given to students at the end of their secondary school year 12.
This test has two levels, a “higher” and a “middle” level, representing dif-
ferent levels of mathematical expertise. The higher-level test has both a
written and an oral component, and includes differential and integral cal-
culus as well as complex problems, including many modeling problems.
The middle-level test includes only basic mathematical tasks, algorithms,
or procedures. Every year, approximately 95 000 Hungarian students take
this exam. Of this total, only approximately 3 500 (or 3.6%) students feel
confident enough in their mathematics skills to take the higher-level test.
However, universities training future engineers, information technologists,
mathematicians, mathematics teachers, and architects only have enough
space to accommodate approximately 20–25% of each graduating class,
and a high level of mathematical knowledge, as would be tested by the
higher level central maturity exam, is a requirement for these majors.

The other test is the first year test that all students must take at the
beginning of their university or college-level studies. This test contains
problems based only on middle-level central maturity exam requirements.
Currently, student results on this test require most students to partici-
pate in a remedial “adjustment” course in order to continue with their
studies, in which they review basic secondary mathematical concepts,
algorithms, procedures, etc. Two elite Hungarian universities (Technical
University Budapest and Eötvös Lóránd University Budapest) recently
discovered similar indications of Hungarian students not achieving the de-
sired mathematical competence. These universities found that most stu-
dents do not understand key mathematical relationships and ideas; they
have weak analyzing, modeling, and imaginative abilities; their work is
hard to follow, and their knowledge is superfluous. It does not need to
be emphasized how important these factors are in effective mathematical
problem solving (Csákány, 2011).

To summarize: The above indicators show that the majority of Hun-
garian students lack basic desired mathematical proficiency. Therefore,
the Hungarian mathematics education system is not working very effec-
tively and needs to be improved. While the fostering of the most talented
students’ mathematical skills and understanding is not an issue (these
students’ performance remains high), the system is not teaching the vast
majority of students the mathematical knowledge, skills, and problem
solving abilities that they need. Laurinda Brown, who visited Hungarian
secondary schools many times, may have hinted at the problem years ago
when she stated: “You in Hungary are teaching mathematics, we in Eng-
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land children!” (Brown, 1990). More recently, the Mathematical Trans-
gressions 2015 Cracow conference suggested new approaches to improving
the teaching of mathematics, with lessons from different disciplines to im-
prove the effectiveness of mathematical teaching at primary and middle
school levels. Many of the discussed approaches seemed to possibly be
applicable in Hungary. In any case, it is clear that we need to change this
situation.

What can mathematics educators do to effectively teach not just the
top 5–10% of the most gifted students, but to teach all students basic
math skills, and give at least the top quartile of mathematically-talented
students the more advanced math skills that they need to succeed in their
studies and the increasingly technical career opportunities of the future?

As a basis for discussing this question, I will review, first, human
cognitive architecture and memory systems, and second, Cognitive Load
Theory and its implications for problem-based mathematics teaching. Fi-
nally, I will analyze the results of some practical experiments that were
conducted in Hungarian schools considering cognitive loads and poten-
tially decreasing them in order to improve the students’ learning of math-
ematics, and the implications of these experiments to improving mathe-
matics education in Hungary.

2. The human ognitive arhiteture and memory systems

Most neuroscientists accept Baddeley’s model of memory structures:
perceptual (sensory) memory, working memory, and long-term memory
(Baddeley, 2009). Similarly, cognitive architecture has been extensively
researched, and its implications for learning are generally acknowledged:
“Any instructional procedure that ignores the structures that constitute
cognitive architecture is not likely to be effective. Minimally guided in-
struction appears to proceed with no reference to the characteristics of
working memory, long-term memory, or the intricate relations between
them. The result. . . require(s) learners to engage in cognitive activities
that are rightly unlikely to result in effective learning. . . ” (Kirschner,
2006).

Therefore, the consideration of cognitive architecture and memory
structures is critical for effective teaching. For educators, working memory
and long-term memory are the most important ones, as they are the core
locations where human cognition takes place. They can be described as
follows:

Working memory is where conscious human information processing
occurs (e.g., comprehension, understanding, critical thinking, problem
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solving, etc.). It is the “workbench” of our brain; the active problem-
solving space. Working memory has four components: the phonological
loop (to hold and rehearse verbal information); the visual-spatial sketch-
pad (to hold visual and spatial information); the episodic buffer (which
connects the verbal and visual-spatial information) and the “central exec-
utive” (a supervisory attention system that monitors, controls, and directs
information processing between these areas, with the help of information
taken from long-term memory). To summarise, working memory con-
structs plans, uses transformation strategies, analogies, and metaphors,
brings thoughts together, and abstracts and externalizes mental represen-
tations. Working memory, therefore, is extremely important in problem
solving, as the students need a clear mental representation of the task at
hand (understanding the problem), and, while seeking a strategy (solution
method), need to remain aware of the conditions and the goal, monitor
progress, inhibit wrong, unsuccessful ideas, and control their results. All
of these processes occur in the working memory. The working memory,
however, has a very limited capacity. It can hold 7 ± 2 new information
units, maybe four plus minus one. Additionally, working memory can
process only two or three information units at a time. Finally, working
memory can only hold information, without rehearsal, for about 18–20
seconds. Therefore, the limitations of working memory are very important
in problem solving, as maintaining relevant information and inhibiting ir-
relevant information are critical (Baddeley, 2009; Clark, 2006).

Long-term memory is the storehouse of knowledge. It holds informa-
tion in “schemas”, mental structures that organize and structure knowl-
edge. Schemas are created in working memory, and then integrated into
existing schemas in long-term memory. Individuals then retrieve schemas
(which hold knowledge) from long-term memory into their working mem-
ory as needed, in order to understand and process situations and prob-
lems. Unlike working memory, long-term memory does not have maxi-
mum capacity or time limit for holding information.

The connection between long-term and working memory is very im-
portant in learning. When schemas are built, they take information units
from working memory, and free working memory resources. Schemas can
also become “automated”, and when individuals use automated schemas,
there are no working memory capacity demands.

3. Cognitive load theory

Cognitive load can be defined as the load imposed on working mem-
ory by presenting information. It is based on the following assumptions
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(Chipperfield, 2006):
– Short-term memory (working memory) capacity is limited to 7 in-

formational units.
– Long-term memory (where all information and knowledge is stored)

capacity is unlimited.
– Knowledge stored in long-term memory is held in “schemas”, or

schemata.
– Schemas, no matter how large or complex, are treated as a single

informational unit in working memory.
– Schemas can become automated, imposing no load on working me-

mory.
Because working memory is limited, the cognitive load placed on

working memory must be limited in order for optimal learning to occur.

3.1. Types of ognitive loads

Intrinsic cognitive load (also sometimes called “essential processing”)
refers to the cognitive load imposed by information which must be pro-
cessed simultaneously. For example, when solving word problems, this
information would consist of reading the problem, concluding what the
problem asks, and solving the problem. Intrinsic cognitive load is embed-
ded in a problem; teachers cannot influence it.

Extraneous cognitive load refers to the cognitive load imposed by the
manner in which information is presented. This may include unnecessary
superfluous information (such as background music), holding mental rep-
resentations of facts or figures, or separating related information (such as
geometric figures and related written statements). Extraneous cognitive
load can make information harder to understand, and is not embedded
in a problem; therefore, teachers can influence it.

Germane cognitive load (also sometimes called “generative process-
ing”) is the cognitive load placed on working memory by schema forma-
tion, integration, and automation. Germane cognitive load explains the
observed differences in the students’ performance reflecting their relative
experience, ability level, and content knowledge.

In summary, total cognitive load = intrinsic load + extraneous load
+ germane load. When planning teaching, teachers must take both po-
tential total cognitive loads imposed by problem-solving as well as the
instruction method into consideration, as too much cognitive load will
impede learning.



Applying ognitive load theory in mathematis eduation [311℄

3.2. Measuring ognitive load

There are three general methods of measuring cognitive load: subjec-
tive, physiological, and task-performance based.

The subjective method of measuring cognitive load is very realisable in
the classroom. It is based on the assumption that students can assess the
mental effort they are expending. An often-used technique of subjectively
measuring cognitive load is the one-dimensional ninth grade symmetrical
category scale developed by Pass (1992). In this technique, the students
rate their perceived mental effort after completing a problem on a nine-
point rating scale (ranging from “very, very low mental effort” to “very,
very high mental effort”).

The physiological method of measuring cognitive load includes mea-
suring heart rate or eye activity while students are solving problems.

Task-based and performance-based methods of measuring cognitive
load consist of measuring primary task performance (actual task per-
formance) and secondary task performance (based on a secondary task,
performed concurrently with the primary task), using a relevant scale.

3.3. Instrutional designs to redue ognitive load

As cognitive load on working memory must be limited for optimal
learning, instructional methods to reduce and control cognitive load must
be included in education. Instructional methods and principles relevant
to reducing cognitive load include the following:

Worked examples. “Research has provided overwhelming evidence
that, for everyone but experts, partial guidance during instruction is
significantly less effective than full guidance” (Clark, 2012). The use of
“worked examples” is a technique in which the solution to a problem is
explained to the students and modelled by the teacher. This allows the
students to concentrate on the essential problem states and possible re-
lated moves. It also facilitates the students’ integration of solution schema
into their long-term memory.

Open problems (“goal free” problems). For some problems, the distance
between the start phase and the goal is very high. With such problems, it
is desirable to ask the students to find all the relevant data they can during
the process of solving the problems. In our experiments, the “opening” of
closed problems goes in this direction.

Completion problems. These are a special form of worked examples. In
such problems, there are gaps in the presented solution, and the students
are asked to fill them.
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Split-attention effect. For different representations (visual and textual)
of the same concept, procedure, or strategy, the students need to create
mental representations. This requires them to “split” their attention. If
the representations of related information are very far from each other, it
may be difficult for them to integrate these representations into a single
mental representation that would allow them to best learn. Therefore, in
teaching, it is desirable to present visual and verbal information in a way
that facilitates the students’ integration of this information into a single
mental representation. (This explains why students will learn better from
multimedia lessons when words are spoken, rather than printed, beside a
picture.)

Modality effect. This refers to managing the essential mental process-
ing of different forms of information (and also explains why people learn
better from a multimedia lesson when words are spoken, rather than
printed, beside a picture).

Redundancy effect. This occurs when multiple sources of the same
information are self-contained, and can be understood alone, as the other
form may disturb the understanding.

3.4. The impliations of ognitive load theory for mathematis problem-

solving teahing

The goal of mathematics education is to enable students to be success-
ful mathematics problem-solvers. We shall analyse the two different basic
positions on how to accomplish this goal: discovery/unguided instruction
versus guided instruction.

In Hungary and perhaps elsewhere, mathematics educators have been
strongly influenced by the ideas of Pólya, Dienes, and Varga that problem-
based, unguided “discovery” learning is the best method of learning and
teaching mathematics. For mathematics experts, and perhaps the top
5% of naturally mathematically-gifted students, the problem-based sys-
tem of learning is clearly very effective. However, it is less effective for the
remainder of students. This is indicated by recent test scores of the major-
ity of Hungarian students taught by this method on the aforementioned
international and national tests of mathematical competence. Addition-
ally, it is explained by the commonly acknowledged principles of memory
structure, cognitive architecture, and cognitive load theory. Therefore,
an exclusive commitment to a teaching system based on closed prob-
lems and discovery learning can impede our goal as educators to teach
all students, as well as ensure that the next 15-20% tier of students who
have the aptitude and interest to pursue advanced studies in mathematics
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and/or professional technical or teaching careers that require advanced
mathematics training, will be well prepared to do so.

After witnessing the difficulties of many of my own students in learn-
ing mathematics using the problem-based discovery method, I began my
own research regarding human cognitive architecture and the findings of
comparative studies of discovery/unguided versus guided instruction, and
my research led me to change my own previous commitment to only make
use of the discovery/unguided model of instruction.

The international literature in didactics of mathematics and educa-
tional psychology present a variety of views on this subject. Researchers
who have conducted scientifically-controlled randomized studies in this
area and whose findings I reviewed include John Sweller, Richard E.
Mayer, John Hattie, Richard E. Clark, Paul A. Kirschner, and Gregory
Yates.

J. Hattie summarized extensive research about learning and teaching
in a study examining the experiences of 1 000 schools and 3 000 teachers
in Australia and New Zealand, as well as 50 000 research articles and
800 meta-analyses. This research provided information on the learning of
240 000 000 students. One of the investigated issues concerned our topic
of unguided versus guided instruction; or, teacher as “activator” versus
teacher as “facilitator”. The average teacher as activator effect size was
0.61, while the average teacher as facilitator effect size was 0.19 (with
effect size = [average on post-test – average on pre-test] : standard devi-
ation). The effect sizes found for teacher as activator included: feedback
0.75; teacher clarity 0.74; direct instruction 0.59; providing worked exam-
ples 0.57. The effect sizes found for teacher as facilitator included: inquiry-
based teaching 0.31; problem-based learning 0.15; discovery methods in
math instruction 0.11 (Hattie, 2014). Therefore, teacher as facilitator (i.e.
guided learning) was found to be preferable to teacher as activator (i.e.
unguided learning) as a method of teaching.

Research regarding cognitive load theory, as studied by Sweller, Clark,
and Kirschner, confirm the implications of Hattie’s results: “Research
has provided overwhelming evidence that, for everyone but experts, par-
tial guidance during instruction is significantly less effective than full
guidance” (Clark, 2012). “The examples Pólya used to demonstrate his
problem-solving strategies are fascinating and his influence can probably
be sourced, at least in part, to those examples. Nevertheless, in over half
a century, no systematic body of evidence demonstrating the effectiveness
of any general problem-solving strategies has emerged. It is possible to
teach learners to use general strategies such as those suggested by Pólya
(Schoenfeld, 1985), but that is insufficient. There is no body of research
based on randomised, controlled experiments indicating that such teach-
ing leads to better problem solving” (Clark et al, 2012).
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Regarding Bruner: “Recommending partial or minimal guidance for
novices was understandable back in the early 1960s, when acclaimed psy-
chologist Jerome proposed discovery learning as an instructional tool. At
that time, researchers knew little about working memory, long-term mem-
ory, and how they interact. We now are in a quite different environment;
we know much more about the structures, functions, and characteristics
of working memory and long-term memory, the relations between them,
and their consequences for learning, problem solving, and critical think-
ing. We also have a good deal more experimental evidence as to what
constitutes effective instruction: controlled experiments almost uniformly
indicate that when dealing with novel information, learners should be
explicitly shown all relevant information, including what to do and how
to do it” (Clark et al, 2012).

A number of reviews of empirical studies have established a solid
research-based case against the use of unguided learning. While an ex-
tensive review of those studies is outside the scope of this article, Mayer
(2004) has recently reviewed evidence from studies conducted from 1950
to the late 1980s comparing ‘pure discovery learning’, defined as un-
guided, problem based instruction with guided forms of instruction. He
suggests that in each decade since the mid-1950s, when empirical stud-
ies provided solid evidence that the then-popular unguided approach was
not working, a similar approach popped up under a different name with
the cycle then repeating itself. Each new set of advocates for unguided
approaches seemed either unaware or uninterested in the previous evi-
dence which stated that unguided approaches had not been validated.
This pattern produced discovery learning, which gave way to experiential
learning, which, in turn, gave way to problem-based and inquiry learning,
which is now giving way to constructivist learning. Mayer concluded that
“The debate about discovery has been replayed many times in education
but each time, the evidence has favoured a guided approach to learning”
(Kirschner et al, 2006).

3.5. Regarding the effetiveness of problem solving learning and teahing

“The superiority of chess masters comes not from having acquired
clever, sophisticated, general problem-solving strategies but rather from
having stored innumerable configurations and the best moves associated
with each in long-term memory. De Groot’s results have been replicated in
a variety of educationally-relevant fields, including mathematics (Sweller
& Cooper, 1985). They tell us that long-term memory, a critical com-
ponent of human cognitive architecture, is not used to store random,
isolated facts, but rather to store huge complexes of closely integrated
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information that results in the problem-solving skill. That skill is knowl-
edge domain-specific, not general. An experienced problem solver in any
domain has constructed and stored a huge number of schemas in long-
term memory that allows problems in that domain to be categorized
according to their solution moves. In short, the research suggests that we
can teach aspiring mathematicians to be effective problem solvers only
by helping them memorize a large store of domain-specific schemas. The
mathematical problem-solving skill is acquired through a large number
of specific mathematical problem-solving strategies relevant to particu-
lar problems. There are no separate, general problem-solving strategies
that can be learned. How do people solve problems that they have not
previously encountered? Most employ a version of means-ends analysis in
which the differences between the current problem-state and goal-state
are identified and the problem-solving operators are found in order to re-
duce those differences. There is no evidence that this strategy is teachable
or learnable because we use it automatically” (Sweller, 2011).

The problem with problem-based learning: If a student does not have
the problem-corresponding schema, the student must search their work-
ing memory to find a relevant solution process. The means-ends analysis
technique is a strategy to control such a problem-solving search. Given
the difference between the current state and the goal state, an action
is chosen which will reduce that difference. The action is performed on
the current state to produce a new state, and the process is recursively
applied to this new state and the goal state. This search in means-ends
analysis causes a heavy burden for working memory, and if nothing hap-
pens in long-term memory, there will be no learning. The alternative is
using worked examples. It enables students to concentrate on problem
states and possible solution steps, and to transfer solution schema into
long-term memory for later retrieval.

The class teaching method: The “class teaching” method is dominant
in Hungarian mathematics education, and so is the tradition of using
the so-called “problem-oriented” style. However, the effectiveness of this
method and style are not proven. “In real classrooms, several problems oc-
cur when different kinds of minimally guided instruction are used. First,
often only the brightest and most well-prepared students may disengage.
Second, others may copy whatever the brightest students are doing – ei-
ther way, they are not actually discovering anything. Third, some students
believe they have discovered the correct information or solution, but they
are mistaken and so they learn a misconception that can interfere with
later learning and problem solving. Even after being shown the right an-
swer, a student is likely to recall his or her discovery – not the correction.
Fourth, even in the unlikely event that a problem or project is devised
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and all students succeed in completing minimally guided instruction is
much less efficient than explicit guidance. What can be taught directly
in a 25-minute demonstration and discussion, followed by 15 minutes of
independent practice with corrective feedback by a teacher, may take sev-
eral class periods to learn via minimally guided projects and/or problem
solving” (Clark, 2012).

About constructivism: “The most recent version of instruction with
minimal guidance comes from constructivism, which appears to have been
derived from observation that knowledge is constructed by learners and
so (a.) they need to have opportunity to construct by being presented
with goals and minimal information, and (b.) learning is idiosyncratic
and so a common constructional format or strategies are ineffective. The
constructivist description of learning is accurate, but the instructional
consequences suggested by constructivists do not necessary follow. Most
learners of all ages know how to construct knowledge when given ade-
quate information and there is no evidence that presenting them with
partial information enhances their ability to construct a representation
more than giving them full information. Actually, quite the reverse seems
most often to be true. Learners must construct a mental representation or
schema irrespective of whether they are given complete or partial informa-
tion. Complete information will result in a more accurate representation
that is also more easily acquired. Constructivism is based therefore on
an observation that, descriptively accurate, does not lead to a prescrip-
tive instructional design theory or to effective pedagogical techniques”
(Kirschner et al., 2006).

4. Experiments with Hungarian students

What can be done to incorporate the lessons of the above research
into Hungarian mathematics education? For one, we can mention one
difficulty that is related to the use of closed problems: many students
cannot even attempt solving closed problems without assistance, because
these problems require top-down deductive reasoning. For these students,
opening a problem gives them the opportunity to take individual steps
toward reaching the solution and begin to learn (for example, by inves-
tigating concrete cases, which utilizes bottom-up, inductive reasoning).
As a result of my research, I decided to conduct my own independent
research regarding student learning and the responses to closed and open
problems, as well as the effects of unguided and guided instruction in
Hungary. My student samples included students of varying mathemat-
ics abilities and aptitudes of middle and secondary school and university
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level. I also had the opportunity to include in my experiments not just
Hungarian students, but some Polish and Finnish students as well. Many
of the students who participated in my research came from small cities
and towns, and experienced large cultural differences with the students
who attend elite schools in Budapest. However, they want to study at
higher levels, and will be competing with such students. Therefore, the
responses of all of the students who participated in this research were
of great interest to me. The following is an example of a closed problem
taken from a typical Hungarian mathematics exercise collection. I used
questions taken from these actual examples in my research.

4.1. Closed Problem 1

The sum of three integers is 2014. Is it possible that their product is
111111?

Grade 5:

The 6 participating students tried to solve the initial, closed-form
problem. Not one student could start. The students then were given a
modified version of the problem (The sum of three integers is 10; can
their product be 27? Hint: try to find 3 numbers with their sum being 10,
and build the product of the summands. Look for more possibilities! Do
you notice something? Give an argument!), with the following results. For
3 students, the modified problem was very unusual. “What shall I do?”
asked V. For these 3 students, it was necessary for me to give 3 concrete
numbers with the sum 10. Only then could they build other examples.
The other 3 students could find more solutions for the sum and built the
products, but they needed additional help: “What kind of numbers are the
products?” Only M noticed the right patterns; namely, that there were
two possibilities for the members of the sum: either all three numbers
are even, or two numbers are odd, and one is even. So their product will
always be an even number, and will never be an odd number.

Grade 6:

The 2 participating students tried to solve the problem. They could
not solve the initial, closed-form problem. The students were then given
the modified version of the problem, with the following results. For the
sum 10, they found more sums, and they built the products. However,
they needed help, and asked questions: “What is common between the
products? Why? What kind of numbers are the members of the prod-
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ucts?” After they received the answers to these questions, they gave the
right arguments.

Grade 7:

The 1 participating student tried to solve the problem. He could not
solve the initial closed-form problem. The student was then given the
modified version of the problem, with the following results. With 10, the
student could find more cases and correctly noticed the possible kinds of
summands: 3 even, or 2 odd and 1 even. He also gave the right argument
for the products. Interestingly, the students initially only used positive
integers. It was necessary to ask them to choose negative integers, too.
It was only after instructing them to choose negative integers that they
saw that the same argument worked here, too.

Grade 10:

The 1 participating student tried to solve the closed problem. He
divided 111111 into prime factors. He received 111111 = 3·7·11·13·37. He
also explained, “We should divide the five factors into 3 groups and build
the sums and check whether it is 2014. Trying to choose all possible triples
from the numbers above we see that it is impossible to get 2014 for their
sum. But it is not nice work”. What was not very nice for this student was
that not only the prime factor triples, but all the possible factor triples
should be checked, and that leads to combinatorics questions.

When I provided the student with some guidance and suggested, “Try
with smaller numbers”, the student very quickly found the impossibility
of his original version, and made the right arguments.

Grade 11:

The 1 participating student was very bright, and tried to solve the
problem. He correctly explained, “Of course, it is not possible because
the sum contains three even, or two odd and one even numbers, so the
product always will be an even number. Also, it cannot be 111111, and
never can be an odd number if the sum is even”.

Summary of results

The younger students needed and greatly benefitted from more guid-
ance. The use of open problems and worked examples with these younger
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students was highly desirable in order to foster their learning. The gen-
eralization, with the right arguments, was successful only for upper sec-
ondary school students.

5. Conlusions

1. The most important step in mathematical transgressions is taking
the first step. Mathematics educators are strongly influenced by
research mathematicians. In Hungary, this is particularly true due
to Hungary’s tradition of producing so many world-famous research
mathematicians. I am not saying that we do not need to hear them, I
am only stating that we need to take the results of other disciplines,
such as cognitive psychology, pedagogy, philosophy, linguistics, and
neuroscience into consideration.

2. We must accept that there are controlled, randomized experiences
in other science domains relating to mathematics education as well.
The main message from these domains is that the mathematics
learning and problem solving of experts are hugely different for
novices. Most of the students need more guidance; discovery, pro-
blem-based, inquiry learning is not relevant for them. We must ac-
cept the characteristics of cognitive architecture and the result of
comparative experiments between guided and unguided teaching.

3. My short experiments relate first of all to opening the closed prob-
lems. These forms helped to reach more students. Hungary’s math-
ematics education culture has strongly supported the use of closed
problems. This is based on its research tradition, as well as the
arguments that discovery provides the best form of learning mathe-
matics and that the students’ mathematics achievements cannot be
assessed by open problems. One of the consequences of this thinking
is that text books and task collections only contain closed problems.

4. An important lesson from these other scientific domains is that the
cognitive processes involved in the mathematics learning and prob-
lem solving of experts is different from those of novices, and most
students need more guidance. Comparative experiments on the ef-
ficacy of guided versus unguided instruction and my own research
show this as well.

5. While closed problem-based teaching may be effective in reaching
the top tier of gifted students, it does not reach all promising stu-
dents. Reaching all of the promising students and providing them
with a solid mathematics education should be our goal as mathe-
matics educators.



[320℄ András Ambrus

6. To be truly effective, this transgression needs to go further. The
ideas put forth in this paper need to be utilized not only in mathe-
matics teacher training, but also in ongoing mathematics education
practice. This will make Hungarian mathematics education more
effective at all levels.

7. We shall prepare our students for this teaching culture. The practic-
ing teachers should also be prepared by in-service teacher training
courses and through the open media.

Referenes

Ambrus, A. (2014). Teaching Mathematical Problem-Solving with the
Brain in Mind: How can opening a closed problem help? CEPS Journal
4(2), 105–120.
Brown, L. (1990) Personal communication. (CK CITE).
Chipperfield, B. (2006). Cognitive Load Theory and Instructional De-
sign Saskatoon. Saskatchewan, Canada: University of Saskatchewan (US-
ASK). Retrieved on November 7, 2006 from http://www.usask.ca/edu-
cation/coursework/802papers/ chipperfield/chipperfield.pdf
Csakany, A. (2011). Results of Mathematics “test zero” at Budapest
University of Technology and Economics in 2010, Mathematics in Ar-
chitecture and Civil Engineering Design and Education, conference pro-
ceedings.
Clark, R. E., Sweller, J., Kirschner, P. (2012). Putting Students on the
Path to Learning. The Case for Fully Guided Instruction. American
Educator, Spring, 6–11.
Dienes, Z. (1999) Építsük fel a matematikát (Let us build up mathemat-
ics) SHL Hungary Kft. Budapest p. 33.
Hattie, J., Yates, G. (2014). Visible Learning and the Science of How
We Learn. Routledge London p. XI, p. 73,
Kirschner, P. A. (2002). Cognitive load theory: Implications of cognitive
load theory on the design of learning. Learning and Instruction 12(1),
1–10.
Kirschner, P. A., Sweller, J., Clark, R. E. (2006). Why Minimal Guid-
ance During Instruction Does Not Work: An Analysis of the Failure of
Constructivist, Discovery, Problem Based, Experimental, and Inquiry-
Based Teaching. Educational Psychologist 41(2) 75–82.
Mason, J. (2013). Personal communication (CK CITE).
Mayer, R. E. (2004). Should there be a three-strikes rule against pure



Applying ognitive load theory in mathematis eduation [321℄

discovery learning? The case of guided methods of instruction. American
Psychologist 59, 14–19.
Paas, F. (1992). Training strategies for attaining transfer of problem-
solving skill in statistics: A Cognitive-load approach. Journal of Educa-
tional Psychology 84, 429–434.
Paas, F., Tuovinen, J. E., Tabbers, H. K., & Van Gerven, P. W. M.
(2003). Cognitive load measurement as a means to advance cognitive
load theory. Educational Psychologist 38(1), 63–71.
Paas, F. G. W. C., and van Merrienboer, J. J. G. (1993). The efficiency
of instructional conditions: approach to combine mental-effort and per-
formance measures. Human Factors 35(4), 737–743.
Shoenfeld, A. H. (1985) Mathematical Problem Solving, Academic Press,
INC New York.
Sweller, J., Clark, R. E., and Kirschner, P. A. (2011). Teaching general
problem solving does not lead to mathematical skills or knowledge. EMS
Newsletter, March, 41–42.

Eötvös Lóránd University of Budapest
Hungary
e-mail: ambrus@cs.elte.hu





Mathematics, Arts

and other Sciences





Mathematical Transgressions 2015

Jerzy Pogonowski

Paradox resolution as a didati tool

Jerzy Pogonowski

Abstrat. This paper contains a few reflections concerning a rather
thankless task: teaching mathematics to the students of humani-
ties. Our series of lectures Puzzles is a collection of mathematical
and logical puzzles, conundrums, brain teasers, etc. It is thought of
as a training in efficient problem solving. Below we give a few exam-
ples of puzzles from our lectures. Special emphasis is put on those
problems which bear a touch of paradox. We add a few reflections
on mathematical intuition and on pathology in mathematics.

1. Goal

It is simple to formulate our goal in general terms but its further spec-
ification requires a few comments. First of all, we are discussing mathe-
matical puzzles and not standard mathematical exercises.

What is a difference between a math puzzle and a typical exercise?
Usually, exercises are thought of as skill-improving tasks. After calculat-
ing, say, two hundred integrals you may get an impression that you know
how to deal with integrals. Exercises are necessary to get fluency in the
considered domain. We do not require a high level of sophistication in the
formulation of exercises: they should be formulated as simply as possible,
clearly presenting the problem to be solved. Exercises are thus the source
of confirmation of mathematical intuitions accepted so far.

We think that mathematical puzzles should possess two properties.
First, each puzzle should contain an intriguing plot, it must be interest-
ing as a story which demands your attention and which causes a kind
of cognitive discomfort in your mind. As a consequence, mathematical

Key words and phrases: mathematical puzzle, paradox, mathematical intuition,
pathological objects, mathematical problem solving.
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puzzles are often connected with real-life phenomena, though the math-
ematics behind them may be very sophisticated. Second, the solution of
the puzzle should be surprising, unexpected, demanding reflection. Most
valuable are puzzles whose solutions force us to correct our beliefs based
on intuition only. Many such puzzles contain paradoxes whose solutions
enable us to modify of mistakenly held beliefs.

We claim that paradox resolution is very instructive as far as the de-
velopment of correct mathematical intuitions is concerned. Obviously, one
should use several standard (normal, typical, natural) exercises in teach-
ing mathematics – they doubtlessly serve as proper tools for stabilization
of intuitions. However, to see clearly the limitations of our mathemati-
cal intuitions we should investigate also the objects which – for several
reasons – are called pathological in mathematics. Such objects usually
become later domesticated, thus leading to new mathematical domains.

The main goal of our lectures was to convince the students that solving
math puzzles might be entertaining and instructive. The lectures were
also thought of as a training in solving (abstract as well as very practical)
problems with just a little help of mathematical reasoning. Judging from
students’ activity during the course and from the final essays they wrote,
we may risk to say that the lecture was not a complete failure.

We think that an active participation in the course may be useful
in development of critical thinking ability which is of great value for
itself. In order to solve a puzzle you are supposed to be creative and
not only to follow, say, a prescribed algorithm. The search of solutions
is sometimes much more important than the final solution itself. One
should consider the final solution to the investigated puzzle as a reward
for intellectual activity engaged in the process of solution. The feeling of
individual success is the best motivation for mathematical education.

2. Methodology

There exists a huge literature on Mathematical Problem Solving (MPS,
for short). Everybody mentions of course the classical works of Polya in
this respect (Polya 1945, 1954, 1965). We personally appreciate also the
directives contained in the works of Schoenfeld (cf. e.g. Schoenfeld 1992).

The well known Polya’s schema of mathematical problem solution
consists of four steps: (1) Understand the problem; (2) Devise a plan; (3)
Carry out the plan; (4) Look back. At each step there are more specific
tasks which should be pursued. We are not going to report on them here,
assuming that this classic approach is well known.
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Schoenefeld’s proposals stress, among others, the role of metacogni-
tion in the process of problem solving. He also suggests that the stu-
dents should always attribute sense to the mathematical material they
are searching.

We openly confess that we are hoping to elaborate our own method-
ology of solving problems using mathematical methods. Of course, we are
not looking for universal solutions: we limit ourselves to the work with
adult students who have bad memories from school and who are, in gen-
eral, suspicious with respect to mathematics or even openly hate it. Thus,
we are looking for therapeutic methods for such frightened victims.

Observing the students’ activity during our course we have noticed
that it is much more easier for them to acquire small concise chunks of
dissipated knowledge rather than to listen to lengthy expositions of whole
theories only accidentally illustrated with examples. We are of course
aware of the fact that this kind of teaching does not provide an alternative
for a full course on a given topic. However, our main goal is a training of
solving problems with the help of mathematical methods and we strongly
believe that students which become interested will be eager to read the
textbooks containing full exposition of corresponding theories.

3. Material overed by the ourse

The puzzles are grouped into more or less homogenous topics. These
are:

The Infinite Numbers and magnitudes
Motion and change Space and shape
Orderings Patterns and structures
Algorithms and computation Probability
Logic (paradoxes, sophisms, Scientific, linguistic,
paralogisms) philosophical puzzles

The grouping is tentative – some puzzles may belong to more than
one group. We stress the unity of mathematics. Division of puzzles into
groups is subordinated to didactic aims. After discussing the puzzles of
each group we present short commentaries about the origin and function
of the mathematical concepts involved in solutions of these puzzles. The
historical comments are limited to a minimum. More attention is paid
to discussion of main mathematical notions, methods, proof-techniques,
types of reasoning, etc.
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Currently we have collected about 120 puzzles with solutions and com-
mentaries. Most likely, we will publish the collection with approximately
200 puzzles. Let us marginally mention that we have also translated (from
English to Polish) some collections of logic puzzles (Smullyan 1982, 1987,
2009, 2013).

Mathematical puzzles have a long history. Actually, it might well be
the case that the origins of mathematics are rooted in the efforts of puzzle
solution at the time when no systematic mathematical knowledge had yet
been collected. Puzzles served sometimes also as seeds of new mathemat-
ical disciplines.

There is a vast literature concerning mathematical puzzles (a few of
our favorite collections are: Barr 1982, Gardner 1994, 1997, Havil 2007,
2008, Levitin, Levitin 2011, Mosteller 1987, Petković 2009, Winkler 2004,
2007). Recently one can find thousands of math puzzles in the internet.
One should also mention several mathematical competitions, either na-
tional or worldwide.

4. Examples

Many of the puzzles presented during the course concern several as-
pects of infinity. We think that they are very instructive for developing
mathematical intuitions. The students should become aware that mathe-
matics transcends physical reality and it is not an approximation of this
reality only.

We encounter infinity in several contexts in mathematics, e.g. in-
finitely large objects (for instance, infinite sets), infinitely small objects
(for instance, infinitesimals in non-standard analysis), infinitely complex
objects (for instance, fractals), limits as objects obtained in an infinite
process, objects “at infinity” (points, lines, etc.), infinite sums and prod-
ucts. We try to “domesticate” these notions via specially prepared puzzles.
They concern e.g., the harmonic series, several supertasks (Thomson’s
lamp, Laugdogoitia’s balls, ancient paradoxes of motion, etc.), methods
of constructing fractal objects, Hilbert’s hotel, spirals, infinite binary tree,
and so on.

4.1. Sum-produt puzzle

S knows only the sum and P knows only the product of two numbers
x and y and they are both aware of these facts. They both know that
x > 1, y > 1, x+ y 6 100. The following dialogue takes place:
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– P : I do not know the two numbers.
– S: I knew that you did not know them.
– P : Now I know these numbers.
– S: Now I know them, too.
Find these numbers x and y. This is Freudenthal’s puzzle from 1969,

popularized later by Gardner (Freudenthal 1969, 1970, Gardner 1979).
The above statements (in this order) imply several arithmetic facts which
enable us to find the (unique) solution: the numbers in question are 4
and 13.

4.2. Bouning balls

Let the mass of two balls be M and m, respectively. Suppose that
M = 100nm (n > 0). We roll the ball M towards ball m which is near
the wall. Thus M hits m which bounces off the wall. How many collisions
occur (jointly, i.e. between M and m and between m and the wall) before
the ball M changes direction? The answer depends on n, of course.

A surprising fact is that the number of balls’ collisions is equal pre-
cisely to the first n+ 1 digits of π. It is worth noticing that the result is
purely deterministic and not based on probability, as in the well-known
Buffon’s needle puzzle. The solution is presented in Galperin 2003.

4.3. Sliding ladder

A ladder of length L is leaning against a wall. The bottom of the
ladder is being pulled away from the wall horizontally at a uniform rate
v. Determine the velocity with which the top of the ladder crashes to the
floor.

Let x be the distance of the bottom of the ladder from the wall (thus
measured on the ground level) and y be the distance between the bottom
of the wall and the point at which the ladder touches the wall.

It seems natural to use the Pythagorean Theorem: x2 + y2 = L2.
Further, we have dx

dt
= v, and hence dy

dt
= −v · x

y
(which we obtain by

differentiating the equation x2 + y2 = L2 in which both x and y are
functions of time t). Thus, dy

dt
→∞ when y → 0. Assuming that the top

of the ladder maintains contact with the wall we obtain an absurdity: the
velocity in question becomes infinite!

Actually, at a certain moment the ladder looses contact with the wall.
After that, the motion of the ladder is described by the pendulum equa-
tion. The solution of this puzzle can be found in (e.g. Scholten & Simoson
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1996). More accurate descriptions of this problem involve friction, pres-
sure force, etc.

4.4. Conway's army

The game is played on an infinite board – just imagine the whole
Euclidean plane divided into equal squares and with a horizontal bor-
der somewhere. You may gather your army of checkers below the border.
The goal is to reach a specified line above the border. The checkers move
only vertically or horizontally. Thus diagonal moves are excluded. As in
the genuine checkers, your soldier jumps (horizontally or vertically) over
a soldier on the very next square (which means that he kills him) pro-
vided that it lands on a non-occupied square next to the square occupied
previously by the killed soldier.

It is easy to show that one can reach the first, second, third and fourth
line above the border. As an example, here is a minimal army capable of
reaching the third level:

T

• • • • •

•

•

•

However, no finite amount of soldiers gathered below the border can
ever reach (by at least one surviving soldier) the fifth line above the
border! The solution can be found (e.g. Berlekamp, Conway & Guy 2004;
Havil 2007). The solution uses a representation of the army as a formal
polynomial. It is invented in such a way that the rules of the game preserve
its value. The target is given a specific value and one can show that the
target’s value cannot be reached by any finite army below the border.
There exist several generalizations of this game with their own limitations
as far as the accessible level above the border is concerned.

4.5. Balls in a box

Suppose you have an infinite number of balls, more exactly: you have
an infinite number of balls numbered with 1, an infinite number of balls
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numbered with 2, an infinite number of balls numbered with 3, etc. – an
infinite number of balls numbered with any positive integer. You have also
a box, in which at the start of the game there is a certain finite number of
such numbered balls. Your goal is to get the box empty, according to the
following rule. At each move you are permitted to replace any of the balls
inside the box by an arbitrary finite number of balls with numbers less
than the number on the ball removed. Of course, balls with number 1 on
them are simply removed from the box, because you can not replace them
by balls numbered with a positive integer smaller than 1. Is it possible to
make the box empty in a finite number of steps?

Everybody immediately can see the trivial solution: just replace each
ball in the box with a ball numbered by 1 and then remove all these
balls, one by one. Thus, the answer to the puzzle is certainly affirmative.
However, there is a subtlety in this puzzle. It is the fact that you can not
in advance predict the number of steps required to finish the game. The
solution is described e.g. in Gardner 1997.

The game can be represented by a tree. The root of the tree represents
the empty box. Its immediate successors represent balls in the box at the
beginning of the game. If you remove, say, the ball with numer n from
the box and replace it by, say, k balls with number m (m < n), then from
the node occupied previously by n you draw k edges to new leafs of the
tree, all labelled with the number m. Each path in the tree corresponds
thus to a (finite!) decreasing sequence of positive integers. Removing a
ball labelled with 1 means removing the corresponding node in the tree.

The proof that the game always leads to the empty box uses the
König’s lemma, which says that an infinite, finitely generated tree con-
tains an infinite path. Recall that the tree is infinite if it has an infinite
number of nodes and it is finitely generated if each node has only a finite
number of immediate successors.

Suppose that the tree of the game is infinite. It is of course finitely
generated, according to the rules of the game. Hence, by König’s lemma,
it contains an infinite path. But each path of the tree is a decreasing
sequence of positive integers and therefore can not be infinite – the set of
all positive integers is well ordered by the usual less-than relation. We got
a contradiction, so the supposition that the tree of the game is infinite
should be rejected.

There is a bloody version of this puzzle, concerning Herakles killing
a hydra. There are also very serious and important theorems behind the
puzzle. Namely, it can be shown that some sentences in the language of
the first order Peano Arithmetic (think of the arithmetic you know from
the school, that is enough) though true in the standard model of this
theory (i.e., roughly speaking, true statements about the genuine natural
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numbers) are nevertheless unprovable in this system. They are provable
only in a much more stronger system, where infinitary tools are allowed.

4.6. Ant on a rubber rope

This cute puzzle has several versions (cf. e.g. Graham, Knuth &
Patashnik, 1994), a typical one being the following:

An ant starts to crawl along a taut rubber rope 1 km long at
a speed of 1 cm per second (relative to the rope it is crawling
on), starting from its left fixed end. At the same time, the
whole rope starts to stretch with the speed 1 km per second
(both in front of and behind the ant, so that after 1 second
it is 2 km long, after 2 seconds it is 3 km long, etc). Will the
ant ever reach the right end of the rope?

It should be stressed that this is a purely mathematical puzzle – we
ignore the ant’s mortality, we assume that there exist infinitely elastic
ropes, etc.

People usually doubt that the ant could achieve the goal in a finite
period of time. However, the answer is affirmative – the ant certainly will
reach the right end of the rope, though it takes a really long time interval.

The dynamic aspects of the problem may cause some troubles in its
solution. In general, one should solve a (rather simple) differential equa-
tion describing the motion in question. However, one can approach the
problem also in a discrete manner, as follows.

The main question is: which part of the rope is crawled by the ant in
each consecutive second? It is easy to see that:

During second the ant crawls part of the whole rope

first 1cm out of 1km 1

100000

second 1cm out of 2km 1

200000

third 1cm out of 3km 1

300000

n-th 1cm out of nkm 1

n·100000

Hence the problem reduces to the question of existence of a number
n such that:

1

100000
+

1

200000
+

1

300000
+ . . .+

1

n · 100000
> 1.
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This is of course equivalent to the existence of n such that:

1 +
1

2
+

1

3
+ . . . +

1

n
> 100000.

We know that the harmonic series
∞
∑

n=1

1

n
is divergent. Therefore, there

exists a number n such that 1 + 1

2
+ 1

3
+ . . .+ 1

n
> 100000 . This number

is really huge, it equals approximately e100000−γ , where γ is the Euler-
Mascheroni constant:

γ = lim
n→∞

(

n
∑

k=1

1

k
− lnn

)

= 0, 5772156649501 . . .

This constant remains a little bit mysterious – for instance, we do not
know at the present whether it is rational or irrational.

Essential in this puzzle is the fact that the considered velocities are
constant. If, for instance, the rope is doubled in length at each second,
then the poor ant has no chance to reach the right end of the rope (crawl-
ing, as before, with constant speed). The puzzle has also interesting con-
nections with the recent views concerning the Universe. Remember: the
space of the Universe is expanding, but the speed of light is constant.
What are the consequences of these facts for the sky viewed at night in
a far, far future?

5. Intuition and pathologies

Shaping of proper (correct, adequate) mathematical intuitions is de-
clared as the main didactic goal in math teaching. Independently of the
question how it should be done there arises a very natural question: which
intuitions are proper (correct, adequate)? Who should be responsible for
establishing an allegedly complete list of mathematical intuitions, or more
modestly, intuitions which are considered as proper just currently? It
seems that there is no easy answer to that question.

5.1. What are mathematial intuitions?

Mathematical intuition is presented in the axioms, which is evident:
they are accepted without proof, on the basis of some intuitive beliefs
alone. One should keep in mind, however, that in the most important
mathematical domains axiomatic approach was preceded by a huge cumu-
lation of knowledge about the domain in question. The literature on this
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subject is very large. Let us only mention that e.g. (Feferman, Friedman,
Maddy & Steel, 2000) try to answer the question of whether mathematics
needs new axioms.

We meet mathematical intuition also in the everyday practice of math-
ematicians – in reasoning by analogy, in making generalizations, in several
heuristic rules of thumb, in using inductive assumptions before formula-
tion of a hypothesis to be proven, etc. Needless to say, the main body of
mathematical education (especially teaching on the elementary level) is
based on intuitive explanations.

In our opinion, simple mathematical intuitions emerge from two sour-
Ssces: our cognitive powers and symbolic violence of the school. The first
source is investigated by cognitive sciences, reflections on the second be-
long to educational studies. More sophisticated intuitions are obtained
during creative work of professional mathematicians.

School programs of teaching mathematics, as far as we know, contain
first of all several algorithms whose familiarity is necessary in practical
calculations, simple planning tasks, measuring, etc. Talking about math-
ematical notions, their mutual dependencies, their origin, etc. takes place
only occasionally. The role of proofs is also diminished, as we have no-
ticed from recent school textbooks. One may get thus an impression that
mathematics means first of all calculations with the help of prescribed al-
gorithms and once and for ever established formulas, treated as dogmas.

Professional mathematicians will laugh at such impressions. Mathe-
matics means rather a play with ideas, a game whose rules are determined
by laws of reasoning. Obviously, these laws are not completely arbitrary
but are based on logic and entailment.

We support the view that mathematics is: search for patterns, solv-
ing problems, making conjectures, proving hypotheses. Thus, we think of
mathematics as of an activity. The results of this activity, i.e. books and
papers written by mathematicians do not exhaust the whole of math-
ematics. They should be prepared according to the standards accepted
by the mathematical community. However, the published text is only an
iceberg of the entire totality of mathematical activities involved in its
preparation.

We propose to understand mathematical intuition in the following
way. First, let us point to elementary (primary) intuitions which are some-
how (we are not going to discuss how – let this problem be investigated
by cognitive sciences) connected with forming such concepts as number,
measure, distance, ordering, etc., i.e. concepts which belong to mental
categorization of every day experiences of humans. This sort of cognition
very likely is structured by evolution and should be investigated in an
empirical way. Next, let us point to secondary (acquired) intuitions which
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evolve in the process of learning mathematics. The formation of these in-
tuitions is influenced mainly by the symbolic violence in the school. At the
very beginning of the study of mathematics the arguments from author-
ity (of the teacher, textbook, sources used in teaching) play an important
role. Good solutions of the problems in the class are prized, bad solu-
tions are corrected. In this process the pupils are encouraged to change
their attitude: from passive observation to active behavior in searching
solutions. At this stage, argumentation from analogy may appear help-
ful, we think. Finally, let us point to the advanced (complex) intuitions
of professional mathematicians who are doing (creating) mathematics by
themselves. Such intuitions are beliefs based on the subject’s own experi-
ence. They may be of course strongly influenced by the subject’s previous
knowledge of mathematics, his skills, the discussions with others, written
tradition, etc. We think that these intuitions can be verbalized and hence
are accessible for investigation. Moreover, such an investigation is not re-
stricted to introspection. Rather, we suggest that revealing professional
mathematicians’ intuitions should be based on the analysis of the source
texts.

Unlike the more-or-less stable intuitions connected with everyday
experience, mathematical intuition is more dynamic. Major sources of
changes of mathematical intuition seem to be: paradoxes, scientific pro-
grams, new results in mathematics. Without going into details let us only
add that mathematical intuition is also influenced by (among others):
aesthetic values, empirical experiments, and mathematical fashion.

5.2. Pathologial objets

The very term pathological immediately implies some negative associ-
ations. On the contrary, mathematical objects named pathological (some-
times also: paradoxical) are signs of strength and vitality of mathematics.

There seem to be at least two typical situations in which one speaks
about pathological objects in mathematics:

1. Unexpected objects, causing a clash with established intuitions. At a
given epoch, mathematicians share intuitive views about the con-
cepts they are dealing with. Discoveries of new kinds of objects (e.g.
negative, imaginary, irrational numbers) may contradict these in-
tuitions. But if the new objects appear fruitful in applications, if
they are equipped with a sound theory, then the initial intuitions
are forced to change.

2. Pathologies constructed specially, on purpose. Such objects are in-
troduced consciously, with specific goals in mind. They may show
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the relevance of assumptions accepted in some theorems or show
explicitly the range of some mathematical concept. For instance,
when one proposes new definitions of concepts formerly understood
in an intuitive way it may happen that this new precise definition
does not exclude some “monsters”, as it was the case with a general
definition of function. There are many examples of such artificially
created pathologies in analysis, measure theory and general topol-
ogy.

The important fact is that pathologies become domesticated. A pro-
totypic example of an object originally thought of as a pathological one
and then becoming normal, standard, “domesticated” is the Cantor set.
Recently no one among professional mathematicians considers it as a
pathology. This is due to its fundamental role in e.g. topology. Only in
popular books authors try to frighten the innocent readers with devilish
mysteries of the Cantor set and other fractal sets.

It is ridiculous – in our opinion at least – to expect that our common
intuitions connected with everyday experience should be respected at any
stage of sophisticated mathematical constructions. At any rate, there are
cases in which operating with well known objects, using perfectly natural
proof techniques one arrives at results which are strongly divergent from
common intuitions – cf. eg. Smale’s theorem about sphere’s eversion or
constructions involving exotic spheres.

The concept of pathology in mathematics is pragmatically biased and
relative to the development of mathematical theories. There are no “ab-
solutely pathological” objects. Similarly, the concept of a “well-behaving”
object is context dependent and connected with applications under con-
sideration.

In some of the puzzles presented during our course we try to famil-
iarize students with some celebrated mathematical pathologies.

6. Whih paradoxes are useful in teahing math?

Teachers of mathematics are supposed to be careful in talking about
their subject: the students should be encouraged to learn new topics but
not become frightened by them. We are trying to follow a secure (in
our opinion at least) way of introducing the methods of mathematical
problem solving to our students. Thus, we ask ourselves the following
questions: (1) At which moment may we introduce a paradox? (2) How
to explain what is standard in the investigated domain? (3) Which parts
of the MPS-methodology are applicable in the case of normal (standard,
natural) objects and which of them are suitable for problems and para-
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doxes concerning pathological objects? At the moment, we are collecting
our observations and we do not want to formulate any hypotheses or
conjectures now.

Nice inspirations for the creation of math puzzles may come from theo-
rems which have a touch of paradox. Thus, the following facts, theorems,
constructions, curiosities, seemingly paradoxical results, etc., could be
used for compilation of entertaining math puzzles: Smith-Cantor-Volterra
sets, Weierstrass function, Dirichlet and Thomae functions, Peano and
Hilbert curves, Alexander’s horned sphere, Wada lakes, Knaster’s curve.

There exist books devoted entirely to counterexamples in different
domains of mathematics (e.g. Gelbaum, Olmsted, 1990, 2003; Klymchuk,
Staples, 2013; Steen, Seebach, 1995; Wise, Hall, 1993).
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Abstrat. This article presents the author’s point of view on the
situation of interdisciplinary research in Poland in the context of
biomathematics. Some well established examples of mathamatical
models in biology and medicine are described. Some bibliographical
positions available in Polish on that topic are listed.

1. Introdution

Mathematics constitutes a kind of language which is used for ages
by people to describe surrounding world. Even in ancient times many
mathematical notions we use today were known. As an example we can
mention golden ratio, which was described by Euclid in his Elements.
Development of complex mathematical tools is inextricably linked with
the development of other sciences, which has been especially visible when
modern physics started to develop. Such standard notion as derivative
has its roots in physics, as it just reflects a speed in some motion.

Nowadays, mathematics is present in every type of our activity. With-
out mathematical models, development of better cars, faster trains, mod-
ern planes, safe usage of internet banking, new diagnostic methods of
various diseases etc. would be not possible and our world would look
completely differently. However, there is a very limited number of people
who realise that mathematics plays so important role in modern world.
Typically, when someone hears something about mathematics, his/her
usual reaction is to think “that’s horrible”.

Biology and medicine are those scientific disciplines in which mathe-
matics is used, but this usage is not so wide as could and should be. This
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model, dynamical system, interdisciplinary research.
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article is devoted to the topic of mathematical modelling in biomedical
sciences, its history and perspectives, from the point of view of Polish
biomathematician, who I am.

2. Historial outline

Since ancient times people tried to use mathematical language (ab-
stract mathematical notions) to describe various natural phenomena. An-
cients applied mathematics in astronomy and geometric optics. The old-
est mathematical model of some biological phenomenon is probably the
Fibonacci sequence. It first appeared in the book Liber Abaci (1202) by
Leonardo of Pisa, known as Fibonacci. In this book Fibonacci considered
the growth of an idealised rabbit population under the following assump-
tions. A newly born pair of rabbits are put in a field where they are able
to mate at the age of one month so that at the end of its second month
another pair of rabbits appears. A mating pair always produces one new
pair every month from the second month on. The puzzle that Fibonacci
posed was: how many pairs will there be in one year? As an answer he
listed the number of pairs at the end of each month:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144.

More precisely, at the end of the mth month, the number of pairs of
rabbits is equal to the number of new pairs (which is the number of pairs
in month m− 2) plus the number of pairs alive last month m − 1. This
gives the mth Fibonacci number:

Fm = Fm−1 + Fm−2 for m > 2,

which can be calculated knowing the initial data F1 = F2 = 1. What is
interesting, this sequence is directly related with golden number, as the
ratio Fm+1/Fm tends to this number 1. In such a way mathematical tools,
specifically dynamical systems, was applied in biological sciences.

For many years development of the branch of science called now
biomathematics has not been observed. Only at the end of the nineteenth
century English demographer Thomas Malthus published An Essay on
the Principle of Population in which he observed that sooner or later pop-
ulation will be checked by famine and disease, leading to what is known as
a Malthusian catastrophe. He pointed out that the increase of the number

1. Clearly, if xm = Fm+1/Fm, then xm = 1 + 1/xm−1, and the limit satisfies

g = 1 + 1/g, that is g2 − g − 1 = 0 implying g =
(

1 +
√
5
)

/2 = Φ.
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of people is governed by the geometric progression, while the amount of
food increases only according to the arithmetic progression 2. We again
found mathematical tools useful to explain the problem from population
dynamics. And again discrete dynamical system was used in this field.
What is interesting, nowadays the notion of Malthus model is associated
with continuous equation

Ṅ =
dN

dt
= rN, (1)

where N(t) is the number of people at time t and r > 0 is the birth rate
(in general, it could happen that r < 0) 3.

For many years scientists discussed the hypothesis of Malthus, and
the final solution was found by Pierre Francois Verhulst in the middle of
eighteen century. Verhulst proposed so-called logistic model in which he
took into account carrying capacity of an environment, and this carrying
capacity is the result of bounded resources of the specific environment.
Under the assumption of bounded capacity competition of the resources
must appear, and this inhibits exponential growth of the population liv-
ing in this environment. In the logistic equation the birth rate r is not
constant, but depends on the population size, such that instead of Eq. (1)
we have

Ṅ = rf (N)N,

where rf is decreasing, rf (N) = r(1−N/K), K > 0 reflects carrying ca-
pacity. This is the begging of application of continuous dynamical systems
in population dynamics.

We should notice that the equation ẋ = ax is the universal model for
many natural phenomena, especially for a < 0 it reflects the process of
degradation of biochemical substances, and is applied e.g. for estimation
of drug dosage (however, in most cases medical doctors do not know about
it), or for determining the age of an object by using the radiocarbon
dating.

For interested reader I would like to refer to (Foryś, 2005; Murray,
2002; 2006; Rudnicki, 2014) for further information on simple mathemat-
ical models in biomedical applications.

2. Clearly, if Nn+1 = qNn, q > 1, describes the number of people, while Xn+1 =
Xn + r, r > 0, reflects the change in food resources, then we have Nn = qnN0 and
Xn = X0 + rn which gives Xn/Nn → 0, and the convergence is vary fast.

3. Notice, that geometric sequence Nn = qnN0 and exponential function N(t) =
N0 exp(rt) take the same values at t = n for q = exp(r), such that both models reflect
the same type of the growth.
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3. Closer to the present time

In the twentieth century mathematical models appeared in biological
applications, especially in the description of interacting populations, more
often. The oldest and probably best known model of that type is a prey-
predator model known as Lotka-Volterra model, proposed in the twenties
of twentieth century. It is also the model which was a spectacular success
in explaining some ecological phenomenon. The model is described as a
simple system of ordinary differential equations that reads

V̇ = rV − aV P,

Ṗ = −sP + abV P,
(2)

where V = V (t) reflects the size of prey species and P = P (t) stands
for predators, in the context proposed by Vito Volterra, who used it to
explain seeming paradox regarding fishery in Adriatic Sea after the First
World War 4. On the other hand, Alfred Lotka proposed the same system
of equations to describe hypothetical biochemical oscillatory reaction on
the basis of mass action law. It turned out that the same model was a
basis to formulate ecological law of mean values preservation, as well as
was able to predict existence of oscillatory chemical reactions. At present,
ecologists and chemists know it very well, however typically do not realise
that this knowledge has mathematical origin (c. f. Foryś, 2005; Foryś,
Matejek, 2014; Murray, 2002; 2006; Rudnicki, 2014).

Polish scientists also have a big success in the field of application
of specific model in biomedical sciences. Professors Maria Ważewska-
Czyżewska and Andrzej Lasota worked together on modelling of red blood
cells production, and after proposing their mathematical model they were
able to develop a new therapeutic method called “oxygen tent” (c. f. La-
sota, Mackey, Ważewska-Czyżewska, 1981; Ważewska-Czyżewska, Lasota,
1976, Ważewska-Czyżewska, 1981).

Unfortunately, it should be noticed that there are not many biologists
or medicals similar to prof. Ważewska-Czyżewska who was not afraid talk
with mathematicians. In most medical doctors and biologists are scared of
mathematics, and it is not only Polish speciality. However, I do not know
details of education in different countries, but I know well that mathe-
matical education for students of biology and other similar fields of study

4. It could be shown that all solutions of Eqs. (2) with positive initial data have
the same mean values (s/ab, r/a). These values changes to ((s+ c)/ab, (r− c)/a) when
individuals are caught with intensity c. Therefore, fishing/hunting results always in
decreasing of predator population and increasing prey population level, which was very
surprising for ecologist 100 year ago, and was explained using mathematical model.
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leaves a lot to be desired. Students of such fields treat all mathematical
courses like a necessary evil, and forgot everything they learned to very
fast. Educational gaps result in difficulties in interdisciplinary coopera-
tion, while such a cooperation is inevitable if we want to be competitive
and innovative.

My own experiences in interdisciplinary cooperation in Poland are
rather negative. It has started during my PhD studies. My supervisor,
Prof. Wiesław Szlenk had a colleague being an immunologist, and he
worked with him on mathematical modelling of immune reaction. I was
also partially involved in this project, and I was able to become convinced
how difficult finding a common language could be. After the death of my
supervisor, who unfortunately died twenty years ago, continuation of the
cooperation was not possible, because it was based on personal relation-
ships of Prof. Szlenk and his colleague. I have tried to establish inter-
disciplinary cooperation many times, but I failed. For a short time, at
the end of the nineties of the twentieth century, I worked together with
foresters from the Forest Research Institute on the project concerning
estimations of specific pests gradations in Polish forests. However, just
after finishing the project, our cooperation also finished. Recently, I have
started cooperation with psychologists on modelling of marital interac-
tions (c.f. Bodnar, 2014; Gottman, Murray, Swanson, Tyson, Swanson,
2002; Murray, 2002; 2006) for introduction to such type of modelling) and
I hope this cooperation will develop. However, my real interdisciplinary
work is not settled in Poland. I am lucky to have a long time cooperation
with the Institute for Medical Biomathematics, Bene Atharot, Israel, led
by Prof. Zvia Agur. In the IMB, biologist works together with chemist
and mathematicians, and Prof. Agur takes care of they common work
that should come to some sort of arrangement. The atmosphere at the
institute is really great, and I am very glad that my skills can be usefully
used, although in Israel, not in Poland. I am afraid that in Poland for a
long time it will not be possible to create such institutes.

On the other hand, I know some examples of Polish interdisciplinary
teams, but the role of mathematics is typically marginal there. More
precisely, mathematical models are used for persons coming from different
fields, but they either do not try to make any mathematical analysis that
could bring some new insight into the knowledge of the analysed process.
However, it is not only Polish problem. There are other evidences that
mathematics is treated marginally, because sometimes proposed models
are not proper or incorrect analysis gives wrong results, what is even
worse comparing to not making analysis 5. In such a context it is obvious

5. I can give one simple example. In (Bratsun, D.; Volfson, D.; Tsimring, L.;
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that mathematicians must be involved in any interdisciplinary projects
where mathematical modelling is used to avoid various kinds of errors that
could appear. This is strongly correlated with financial supports of such
type of research. Unfortunately, in Poland founds for basic research are
divided into separated fields and it is almost impossible to get financial
support for interdisciplinary projects. On the other hand, the institution
that should support such projects, that is National Center for Research
and Development (NCBiR) gives support mostly projects that are of
industrial interest, and that could find direct applications on the market,
not such research that could help to understand some phenomena and
could give some practical results only after many years. It is obvious
that such type of research, like e.g. in the field of civilisation diseases,
including cancer (which is of my main interest), could not be supported
by industrial companies. One can think that this is not true, because
pharmaceutical companies should be interested in supporting this type
of research. However, it should be marked once again that we are talking
about the basic research that is not focused on direct applications, and
therefore I am not able to imagine a company which will be interested
in it.

Despite financial problems, creating an interdisciplinary team is al-
ways difficult due to communication problems, as I have mentioned be-
fore. Scientists from the older and middle generations are typically self-
contained in their fields and they are not able or/and do not want commu-
nicate with persons from different fields. I hope that the young generation
will be able to change this situation. Some of our former students devoted
themselves to interdisciplinary research and have success in their work.
After defending their master’s theses in mathematics, they turn to more
biological/medical problems and got PhD in different fields, which means
that they are able to communicate with biologists or/and medical doc-
tors. Dr. Zuzanna Szymańska defended her PhD in biology and work in
Interdisciplinary Center of Mathematical Modelling at the University of
Warsaw. Dr. Joanna Stachowska-Piętka and Dr. Jan Poleszczuk defended
their PhD theses in technical sciences. Joanna works in Nałęcz Institute
of Biocybernetics and Biomedical Engineering and her research is related
to peritoneal dialysis, while Jan got post-doc position in Moffit Cancer
Center in the USA. This is an interdisciplinary center in which scientists

Hasty, J., 2005) the authors proposed simple linear model with time delay to reflect
some biochemical reaction with delayed degradation. They used the same idea as for
the model without delay. However, they do not noticed that introducing delay leads
to negative solutions, which is of course biologically irrelevant. Therefore, in (Miękisz,
J.; Poleszczuk, J.; Bodnar, M.; Foryś, U., 2011) we proposed corrected model which
could be used in such a case.
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from various fields work together on finding effective methods of cancer
treatment, but it will be not possible without huge US government sup-
port. I hope that he will be able to use this experience in starting similar
project in Poland, and I will be able to participate in it.

4. Bibliographial remarks

In this short article I have only noticed some important positions of
bibliography. However, I would like to mention that EU financial support
allowed for publishing three monographs devoted to various applications
of mathematics (Bartłomiejczyk, 2013; 2014; 2015), where many inter-
esting problems were described and explained in mathematical language.
There are also other text-books available in Polish focused on mathe-
matics in biology, like (Rudnicki, 2014; Wrzosek, 2010). However, the
text-book by D. Wrzosek (2010) was prepared for students of biology,
while the text-book of R. Rudnicki is much more advanced.
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Abstrat. We want to argue for teaching mathematics with com-
puters, treated as tools for visualizing and experimenting. We will
build upon our didactical experience related to:

– a course of mathematics for a broad audience of school stu-
dents at the University of Warsaw („Matematyka dla Cieka-
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– courses for teachers at the Cardinal Stefan Wyszynski Uni-
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– teaching at the school and university levels in Poland and in
France.

We will comment on the feedback from pupils, students and
teachers. We think that software used by researchers on one hand,
and common office packages on the other, can be successfully used
in school didactics. We will give examples of using software like
Mathematica, Matlab/Scilab, R, Excel in presenting mathematical
notions, getting familiar with and as a proposition of integrated
teaching of sciences.

We will also discuss risks related to teaching with computer
tools.
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1. Introdution

The Polish curriculum defines, among others, the goals of school ed-
ucation. At its third and fourth levels (i.e. for students aged 12-15 and
16-19), for mathematics, we have five such goals: using and producing
information (mathematical text, mathematical language), using and in-
terpreting representation (mathematical objects, mathematical notions),
mathematical modelling (situation and its mathematical model), using
and forming a strategy (for problem solving), and finally reasoning and
building an argumentation.

Among these goals, the first two concern the mathematical language,
and the others deal with applying this language to a concrete situation.
Even if both, language and applications, have obviously less and more
difficult parts, and even if both may cause difficulties, it is clear that
the mathematical language is a kind of bricks with which we can build a
strategy for a concrete problem solving. In this sense the first two goals
of the Polish curriculum are “low level” and the three others are “high
level”, when looking at their complexity.

It is also clear that there is a real difficulty for students for passing
from one to the other. This difficulty has for a long time been a real
obstacle for Polish students, that now seems to be gradually overcome,
as the reports of the Program for International Students Assessment show
(PISA, 2009) and (PISA, 2012). Still, the difficulty, that we would even
call a “gap”, clearly remains. We think that this gap can be diminished
by an effort towards visualizing mathematical notions and towards more
experimenting with mathematical ideas and models.

The examples and reflections that we are going to present in the paper
are not fruit of a planned research in didactics, but rather of our – trans-
gressive – teaching experience. It comes mostly from the courses named
Mathematics for Curious People (Matematyka dla Ciekawych Świata),
which have been held at the University of Warsaw for seven years (see
the web page: ciekawi.icm.edu.pl). They are addressed to pupils in two
age groups: 13-15 and 16-19. Each year, a series of meetings has been
proposed on a chosen subject, such as Mathematical Models, Infinity,
Cryptology, Numbers, Pi, Languages, etc; each meeting consisting of a
one hour lecture and two hours of exercises, together with an integration
break. The goal is to deploy the young people interests in mathemat-
ics and computer science. Thus, the course is intended as something in
between popularization and regular teaching. Its main principles are: go-
ing beyond the school program, a problem-oriented teaching, working in
small groups with a lot of individual approach, melting various milieus
and pupils with different knowledge levels, and finally reducing external
motivation.
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The effect is a growing group of participants (30 in 2007 against 200 in
2016 ), a live interest of school teachers and a promising, deep involvement
of university students. In a word, a lot of new interactions related to
teaching mathematics.

These courses are transgressive to the normal education streaming in
many aspects: high school pupils in an academic environment, learning
non–school subjects, teaching done in a large extent by university stu-
dents, no rewarding and no pressure. We think that these specific condi-
tions gave birth to some new ideas; they also gave time for experimenting
with them, so that they can be further applied in traditional teaching.
Let us share here some samples of these and discuss its possible effects.

2. Visualization

The advantages and the methods for visualizing mathematics have
been described at many other points of the Conference (e.g. I. Lénart,
J. Novotnà, A. Sondore, S. Turnau, P. Vighi, B. Wawrzacz, L. Zaręba).
A survey of former studies of the role of visualization in mathematics
education, which started in the 1970’s, can be found e.g. in (Presmeg,
2006) and (Clements, 2014). Clements analyzes the possible meaning of
the word (geometrical representation for mathematicians/mental repre-
sentation for psychologists or cognitive scientists), and discusses meth-
ods for identifying visual and non-visual students. Presmeg invokes the
research on many psychological and cognitive aspects of visualization.
Indeed, when we address visualization from the point of view of its ef-
fectiveness in didactics, we come to the more fundamental questions in
cognitive science. “Exactly what makes imagery effective in mathemat-
ics?”, Presmeg asks in the conclusions of the cited paper (p. 227), pointing
out that this remains an important, needed point of discussion, related to
many other questions on cognition, thinking process, problem solving and
finally teaching. But we think that this question should also be a point of
reflection for teachers. How do we see visualization? Is it only a help tool,
or rather a natural representation of notions? Or may it even be primary
to mathematical notions? Our own conviction is that the answer is situ-
ated close to the third option, and that this is a natural reason for the
importance of visualizing mathematics, that we discover when examining
the learning process’ effects.

It is clear that if we want to visualize and make it a method in teach-
ing, we are faced with the possible use of the computer. The influence of
visual aspects of computer technology on the dynamics of learning math-
ematics is one of the thirteen “Big research questions” in visualization
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for mathematics education, asked by Presmeg (2006). We would like to
give here some examples for visualization in three different areas of math-
ematics (without geometry) and at three different school levels, hoping
that they may give some ideas to the teacher. These examples involve the
computer, but the use of the computer is not crucial there, it will appear
only as a tool. The reader should judge its value in this context, in these
concrete situations.

Example 1: Solving a linear system

Wolfram Alpha, the free version of Mathematica is available online.
Fig. 1 shows the simplicity of using this software for a visual solution of a
linear system. Of course, the exercise is certainly done at the blackboard
in our classes, giving the same effect: illustrating the formal algebraic
operations and their possible effect. We note that this illustration leads
to abstraction: it gives all the possible results (the lines can intersect in

Figure 1. A basic computer tool for a graphical solution of a linear system.
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one point, be parallel or be identical) and the major differences between
them. It is available to anybody who is willing to imagine, even if deprived
of any technical ability to manipulate symbols (yes, it is also a technical
ability, like using computers, the main difference being maybe our pupils
master it less than we do). Now, the important advantage of doing it
by hand is certainly that we do not use any superfluous tool, and do not
create the impression that a computer is necessary for solving the problem
and drawing the solution. Also, we do not have to learn the technicalities
of using a specific program. However, from the point of view of the young
students, the use of the computer bypass all the technical problems that
may arise for them (how to transform, how to draw the line etc.) and
that may hide the idea itself. The computer, besides, gives an additional
possibility of easily repeating the same operation, that is, experimenting
– we will come back to this question in the next section.
Example 2: Trigonometry

What is striking in the polish curriculum in its all possible versions, is
the absence of any mention about the trigonometric circle when teaching
trigonometry 1.

This is, in our conviction, the cause of the difficulty the (good) polish
students have afterwards to understand and use polar/spherical coordi-
nates. This is also certainly the reason why trigonometry, in general, is
not understood, but just taught mechanically. At the same time, there
are dozens of animation available in the web, showing the definition of the
trigonometric functions and how the graphics of these come up from these
definitions – see some examples on Fig. 2 (you have to imagine or check
the animation going). It is our experience that a few minutes of looking
at this animation, commented by the teacher, makes a dramatic positive
change in students’ attitude towards trigonometry. It also help in learning
solving trigonometric problems: angles are set much more naturally on a
circle than on an axis.

Let us stress on the fact we take the teacher role here for granted.
As noted by Mayer (1997, p. 18): “presenting an animation – however
clever – without concurrent narration is unlikely to promote meaningful
learning”. We will come back to this question in Section 4.

1. Another question when speaking about trigonometry in polish high schools is
why the students are not given any real application of trigonometry, apart from cal-
culating lengths given the angles or angles given the lengths. This gives no idea of
the fundamental importance of trigonometry in applications such us electricity, elec-
tronics, image processing etc., which, even if too difficult to learn at this level, should
certainly be mentioned as a motivation to study the subject and could be included in
form of a follow-up study. We will come back to this idea in Section 3..
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Figure 2. Trigonometric animations available on the web.

Example 3: Calulus

A much more advanced, but still a classical example of visualizing with
the help of the computer is the Scilab software, the free and open source
equivalent of Matlab. We comment shortly on an exercise in calculus –
numerical integration – proposed to high school students with no school
background in the subject.

In our approach, we introduce integration before introducing deriva-
tion, and the definite integral before the indefinite one. This is in accor-
dance to how these notions have appeared in the history of mathematics.
Also, this is the way in which the visual idea – of area – comes before
any analytical formula or idea. Then, the derivative is introduced also in
relation to the graphical object which is the tangent line. And the Fun-
damental theorem of calculus becomes the unexpected and striking link
between these two visual ideas.

This theoretical introduction, different from any program taught at
school that we may know, can be perfectly illustrated and trained with
the use of the computer visualizing techniques. In the exercise shown in
Fig. 3, the student, who have learned before a few graphical commands,
is asked to draw the graphic of the sine function on the segment [0, 6π]
and of the function min(sin(x), 0.5) – which is explained in words and not
by a formula in the exercise statement. Then he/she should find a way
to approximate the cut area. To this end, an additional tool is given: a
Scilab function which reads the coordinates of the point that we click on.
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Still, the student can chose his/her own way to solve the problem. The
exercise is easy, but demands some creativity and decision taking. It also
allows to compare solutions of different students.

Let us note that Scilab has been introduced in French high schools
(Gomez et al. 2013), which have one of the most ambitious, detailed
and rigorous programs for teachng mathematics in Europe. Scilab gained
in this way a special “lycée” module and has been introduced in 2006-
2009 at the final school examination (baccalauréat) in classes specialized
in mathematics or technology. At this moment, numerical exercises are
still present but in a “paper” form: the student is asked to design an
algorithm which should complete some task: this supposes some former
experience with programming. Scilab stays an excellent software for such
an experience.

Figure 3. An exercise with Scilab – learning numerical integration.
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3. Experimenting

Many mathematical discoveries were fruits of a long and tedious pro-
cess, in which mental or drawing experiments played a key role, much
more important than what we can suspect when learning. The godfa-
ther of all contemporary signal processing and electronics, Jean-Baptiste
Joseph Fourier (1768-1830), left a great number of graphics representing
sums of scaled sine functions (Fourier, 1822). They give as an impressive
insight into a fertile mental process. Before formulating his crucial theo-
rem on the development of a function into a series of sine functions, he
was just “playing” with drawing a sum of two, three, five of these and
observing the result. Isn’t it just experiment? His observations were cer-
tainly more valuable than the exactness of the resulting statement – the
formulation of the latter had to be corrected by Fourier’s successors.

Do we leave any place for such a mental process to our students? Let
us give a few ideas of how to introduce experimenting into the classroom.

Some examples of lassial experiments; exerises as experiments

The most adapted areas for experimentation are certainly probabil-
ity and geometry. In probability, some of these are described in polish
handbooks (see Karpiński et al., 2011), like the Monty Hall game. Other
experiments are worth to be recommended, like the Galton box or the
“liar” test: take two students, give them two sheets of paper, two pencils
and one coin. Ask them to leave the classroom and note fifty results of
dashes. One of them shall note real results, the other shall invent them.
The teacher, who does not know the roles, will in most cases be able to
guess which results are real. This is the result of the “series law”, which
is quite counter-intuitive: in a series of fifty dashes the probability of get-
ting a series of five consecutive shoots is close to one. And it will nearly
never appear when the results are invented by a human, the verification
of which we leave to the reader as well!

Let us still retain your attention on a mental experiment – counter
experiment? – which are the graphics of the Dutch artist M.C. Escher
(see the official webpage www.mcescher.com). Many of them deal with
the non-Euclidean geometries (Circle Limits, Positive/Negative Space,
Snakes, Herakleidon etc). They can also be viewed as a visualization for
the mathematical notion of infinity, infinite sequence or series. Finally,
the large number of graphics which may be the most interesting from the
point of view of a teacher represent paradoxes and optical illusions (see
e.g. Relativity, Waterfall, Stairway). They captive the pupil’s attention
and interest, but also make the Euclidean axiomatic and geometric proofs
meaningful.
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An experiment is a test of a new hypothesis, an observation, a contact
with the real, tangible world. But experimenting means also repeating the
same action under varying conditions. This has always been present in
teaching mathematics in the form of exercises. It seems to be somewhat
neglected nowadays in polish school handbooks: they contain much less
exercises than those used twenty years ago. We want to stress that exer-
cising does not have to be just memorizing an algorithm. It is does not
have to go against thinking. Indeed, it can also be experimenting, and we
are deeply convinced it should be seen in this way by teachers. This may
give sense to any homework, especially the one which is not only repeti-
tion, but repetition in a new situation. This also gives sense to the idea
of a “flipped classroom”, when homework is a preparation for the lesson
on the subject, and the student’s work is to try to individually cope with
a new situation, a new area, which is then commented in the class – see
the book of Bergmann and Sams (2012) and many other recent publi-
cations on the subject available on the web. It finally gives much sense
to projects realized by students in relation with the learned subject. The
GWO Polish handbooks (Karpiński et al., 2012; Karpiński et al., 2011)
give now a beautiful collection of propositions in this direction.

Examples with use of the omputer

The three examples of visualization given in Section 2. introduce
clearly the possibility of experimenting, or simply playing – with the
tool, which is the computer, and with the mathematical language. Can
you change the system of equations in Example 1 so that the two lines
do not intersect? What does it mean for the solution? What would give a
different combination of sines in Example 2? Do you think there is some
“limit” function? What would it be? How does the value of the area you
calculate changes when you take thinner rectangles, or trapezes? These
questions give place to deep problems and may introduce practical under-
standing of abstract notions: existence and uniqueness of solution, limits,
convergence – without any abstract definition yet. The students can then
try to give their own definition that we may discuss. In this way, we re-
ally do mathematics, discovering it as an art of ideas, as postulated in the
beautiful essay of Lockhart (2009). Learning mathematics becomes again
a “creative and rewarding process of invention and discovery” (Lockhart,
2009).

Let us give still another example, this time in probablity. In the ex-
ercise presented in Fig. 4, the students are asked to simulate a dice on a
spreadsheet (such as Excel, Open Calc, Google Docs). All the commands
that one may need to do this are given. The student has to use the given
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command producing a random number between 0 and 1, and then trans-
form the result into a random integer between 1 and 6 by one among
many given methods. Besides choosing a way to do so, he or she will have
to realize that the right solution has to really simulate a symmetric dice,

Figure 4. A first homework with a spreadsheet (an exercise sheet in Polish).

i.e., to give all the six results with the same frequency. The student has
then to experiment with what he/she has created. Simulating one thou-
sand shoots presents no more difficulty here than simulating just one.
The only problem may possibly be to count the frequency of each of the
numbers, obtained and to realize what is the mistake I have done, if this
frequency does not seem equal for all the six numbers. We gave this task
to a group of 20 high school students (of the course mentioned in the In-
troduction) and to about 40 mathematics teachers of mathematics during
training courses at the Cardinal Stefan Wyszyński University in Warsaw.
About 80% of participants in both groups chose a method which pro-
duced this non–symmetric effect, among the others some avoid it just by
chance, and a few are able to imagine the result already at the command
construction level. In other words, this experiment becomes again a real
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discovery leading to a deeper understanding. Besides, the semi-random
numbers are an interesting subject to be explained at this occasion.

This exercise is only a first of seven steps, leading finally to creating a
game. Each step is composed of a description of the problem to be solved,
of some comments, a collection of useful tools – commands and finally a
sample of a simple story with a naive illustration. At the same time that
the students are creating the game, they also learn the programming
structures such as the if/else statements, loops etc. They can go above
what is necessary and use more commands to introduce more advanced
functions or graphics.

Our experience is that, as well for the pupils as for the teachers, the
possibility of simulating a random process is a new experience and that
it is seen as an interesting and powerful tool.

Let us note that these examples enter again perfectly into “flipped
classroom” model. Actually, when teaching to the group of high school
students, the game creation described above was their almost fully indi-
vidual work – they were given the exercise sheet with the spreadsheet tools
and were asked to send the result by e-mail to the tutor who commented
the solutions, possibly showing the mistakes and asking for a new solu-
tion. A few classes took place for summing-up the progress. Experiment-
ing should indeed be carefully prepared and commented by the teacher
and not only left as a trial-and-error search, which has been seen already
by Zhu and Simon (1987, p. 156). At the same time, by experimenting,
the student is not confronted to the teacher’s decision (right/wrong), but
to a situation (works/does not work). The key role of this didactic change
was seen and worked on by by Seymour Papert (1980; 1993), the inventor
of Logo, in particular in relation to computer tools in learning mathemat-
ics. Finally, also following Papert (1983) and Lockhart (2009), let us note
that experimenting has many features of what is a play and in this way
is not only instructive, but also pleasant for the student.

4. Disusssion and onlusion

We gave a few examples of visualizing and experimenting in mathe-
matics that we strongly believe highly applicable and useful in teaching.
The two methods seem to be closely related, especially when applied with
the use of the computer.

We are aware of the fact that we enter here the vast research and dis-
cussion, which also go back to the 80’s and started probably with a critical
position of Clark, who argued that “media do not cause learning” (Clark,
1983, p. 457). A number of arguments in the debate which emerged has
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been extensively cited or summarized in Clark’s book (2001). Let us note
first a few points situating us in this discussion.

1. We are not looking at computers as vehicles of any dramatic change
in education, but as mere instruments for what may be also done
by more conventional methods. However, we see a range of tech-
nical possibilities in teaching and learning mathematics given by
computers.

2. We nowhere argue for any “computer-based instruction”, which is
one of the key words of the debate that we refer to. On the con-
trary, whereas looking for effective methods, programs and tools, we
strongly believe that instruction, especially instruction of non-adult
students, is based on the teacher, on its own relation to the subject
that he is teaching and to the students. In this context, we note
that our “computer-based” classes (i.e. those in a computer lab)
were in general taught by teachers who were willing to give them
and felt competent in the subject. However, they did not have to
be specialists neither in computers nor in the software they were
using.

3. The same applies to students, who were in general free to chose
the computer classes. About one third of our students were not
interested with experimenting with computers by themselves. At
the same time, visualizations done with the help of the computer,
were rather always interesting to everybody.

We fully agree with Watson’s (2001) conclusion: “We need to inrtervene
with educational ideas, not simply technological issues”. Teachers do not
have to master the techniques, but to be convinced by the pedagogical
ideas behind. Acting in this spirit, we tried to present some of them, and
we have done it following the methodology of “learning from examples
and by doing” (Zhu & Simon, 1987), or what we call experimenting. Our
experience leads us to the opinion that mastering a technique needed for
a particular example, if coming from the conviction about its didactical
utility, is enough for the teacher to use it in the way to put more mathe-
matics and more pedagogy in the class. As we have shown in Section 2.,
the technical part can be minimal.

If we avoid the mistake of giving some determining power to the tech-
nology, we believe we may also prevent other risks. Among them those
traditionally attributed to the use of computer tools in education: on one
hand, the overdose of visual or acoustic impulses which can affect the
ability to concentrate, certainly essential in learning mathematics, and
on the other the absence of the abstract and formal setting, which, even
if less essential, is also necessary in teaching and learning, and can be es-
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sential to some of the students (Clements, 2014 and references therein).
When the computer in education is thought as a tool for visualization
and experiment, and not as a source of information or a technique to
master; when visualization and experiment are seen as methods of filling
some gap in the education, and not a goal in themselves, finally when
the teacher keeps its crucial role in the teaching process, we believe that
these risks are very much attenuated.
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Mathematical Transgressions 2015

Agata Hoffmann

The use of Stanisªaw Dró»d»`s works as teahing aids

in mathematis

Abstrat. As far as teaching practice in mathematics is concerned,
we use different methods, forms and tools, which enable pupils to
acquire both theoretical knowledge and practical skills more effi-
ciently. Stanisław Dróżdż (1939-2007) was a concrete poet, who,
in his work, used not only words, but also visual art. Poetry, art
and mathematics are apparently distant domains, yet when I saw
Dróżdż‘s works, I noticed the opportunity to use them as original
tools in teaching mathematics. I will show his chosen works and
different ways of using them in mathematical education. Some of
them could be used as illustrations of various concepts (for exam-
ple at early stages of maths education). Others could be starting
points in discovering and exploring some regularities. There are also
some which could inspire pupils to look into certain mathematical
problems.

Whilst creating his concept-shapes, Stanisław Dróżdż used sim-
ilarities and differences of various situations. Searching for similar-
ities and differences using analogies and contrast also makes it pos-
sible to build mathematical concepts in pupils‘ minds. By putting
together concept and shape, Dróżdż worked in a way similar to
practice in mathematical education – while defining concepts, we
give them a name and (very often) a symbol, and we try to visualize
them by giving them a “shape”. Using Stanisław Dróżdż‘s works, it
is possible to build yet another bridge between theory and practice,
particularly for pupils to whom maths is not a life-long passion.

A teaching aid is “a tangible object which facilitates the process of
teaching-learning and enables pupils to achieve school optimum” (Okoń,
2007), or “an object that provides students with specific sensory stimuli

Key words and phrases: theory, practice, teaching aids, working methods.
AMS (2000) Subject Classification: 97A30.
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that affect their sight, hearing, touch, etc., facilitating their direct and in-
direct cognitive processes” (Kupisiewicz, 2009). Both definitions refer to
objects that are used so as to enhance the acquisition of new knowledge or
skills, or deepen the understanding of those already existing. In teaching
practice, it is impossible to separate the object from the function it is to
perform. The following functions of teaching aids are distinguished: 1) ex-
emplifying concepts, 2) facilitating thought processes, 3) assisting pupils
in exercises aimed at acquiring practical skills, 4) inspiring students’ emo-
tional reactions (Okoń, 2007). Currently, there is a wide range of teaching
aids on offer in each of these categories (verbal, visual, technical-visual,
auditory and visual-auditory, as well as those which automate the process
of teaching) (Okoń, 2007). However, we should not overlook any opportu-
nity to make use of our own creativity when encountering objects which
may be reasonably used as teaching aids. Such was the case of works
by Stanislaw Dróżdż that I had the opportunity to come across. I will
present some, perceived by me, uses of his selected works in teaching
mathematics.

The first of the above-mentioned functions of teaching aids is exem-
plifying concepts in the learning process.
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Work 1. między (za szybami)/between (behind the glazings), 1994, Muzeum
Współczesne/Contemporary Museum, Wrocław

Pupils in primary education tend to have problems with describing
relationships between objects. Demonstrating and discussing concept-
shapes created by Stanislaw Dróżdż, e.g. między (za szybami)between
(behind the glazings), 1994 (work 1) with children, can become a start-
ing point for pupils’ autonomous, creative activities, so that following
the poet’s idea they could try to create "self-realising" (Łubowicz, 2014)
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objects. At the exhibition showing the works by Stanislaw Dróżdż in
Wroclaw Contemporary Museum, you can see more works of this type.
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Work 2. Bez tytułu (trójkąt)/untitled (triangle), 2006,
http://www.drozdz.art.pl
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Work 3. Bez tytułu (środek)/untitled (center), 1998, http://www.drozdz.art.pl

Students on higher educational levels may try to use the idea of de-
scribing an object’s shape, using its name, both in literal – as shown in
the work bez tytułu (trójkąt) untitled (triangle), 2006 (work 2) and an
abstract way – like in bez tytułu (środek)/untitled (center), 1998 (work
3), where the practically described object was not “drawn”, although we
have no doubt as to its existence.

c ©
A

n
n
a

D
r
ó
ż
d
ż

Work 4. Bez tytułu (półna pół)/untitled (half by half), 1998, Galeria Po-
tocka/Potocka Gallery, http://www.drozdz.art.pl
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Work 5. Sytuacja semiotyczna/Semiotic situation, 2006, http://www.drozdz.
art.pl

You can also attempt to present certain terms. In his work bez tytułu
(półna pół)/untitled (half by half), 1998, (work 4) the poet showed how
a whole (“half by half” written four times) was first divided in half in two
different ways, and how “half by half” (i.e. a quarter) was worked out.
A similar idea (though not only) can be seen in part of the work

Sytuacja semiotyczna/Semiotic situation, 2006 (work 5). The second
and the third square (counting from the left) shown in this work, are
divided into half segments contained in the square symmetry axis pass-
ing through the centers of the respective sides, and the fourth shows
the imposition of these two situations. Similarly,the fifth and the sixth
squares are cut into halves by their diagonals, and the seventh one shows
alignment of these two situations.

With this work we can go forward, because the eighth square can be
treated as imposition of the situation with the fourth and the seventh
squares (and we can ask students to interpret what we obtain in this
manner). We may be tempted to interpret the first and the last square
in this sequence, but that is another problem.
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Work 6. Continuum, 1973, http://www.drozdz.art.pl

In the process of learning we often encounter situations in which stu-
dents come up against difficulties, not only in understanding concepts
themselves, but also in using them correctly. When learning decimals,
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very often pupils do not know which zero can be omitted without chang-
ing the number. Continuum, 1973 (work 6) is well-suited as a starting
point to talk about it. The title suggests that we are dealing with some-
thing that lasts. And indeed, presented there, the "badly cropped“ (trun-
cated ) image suggests that we are dealing with only a fragment of a
larger whole, which ... extends to infinity. Basing on experience (when
a large number is saved, whose record cannot be fitted in one line, it is
continued in the next line), we can assume that the present record shows
a number. Assuming that the same characters (i.e. 0) “extend” indefi-
nitely in all directions, then, although it occupies the whole plane, the
value shown here is the number of ... 0. Interpreting this work performs
the fourth function to be fulfilled by teaching aids – inspiring students’
experience. Talking about what would happen if e.g. not all characters
were zeros before the decimal point, or not all the characters were zeros
after the decimal point, rounds up the substantive content of the issue in
question.
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Work 7. Bez tytułu (punkt)/untitled (point), 2006, http://www.drozdz.art.pl

Contrasting statements are very often used in teaching. In the work
bez tytułu (punkt)/untitled (point), 2006 (work 7) on the one hand, we
have to deal with such contrasting juxtaposition, but we can examine it
further. If we ask questions, eg.: Are there really no points on the left? Is
there only one point on the right? Is it only a distinction? Why is it so
big?, this work can serve as a starting point to talk about understanding
the object in question – the point. Another kind of contrast was used in
the work bez tytułu (koło)/untitled (circle), 1971 (work 8). For my own
private use, I call this work “rectangling the circle”, although the associ-
ation is only visual and the problem of squaring the circle has nothing to
do with it. The presented shape of a rectangle is puzzlingly juxtaposed
with the word “circle”, while the eye of a beholder reading the word is
moving in a circle; this could be a beginning of a conversation on the
nature of the object in question – the circle.
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Work 8. Bez tytułu (koło)/untitled (circle), 1971, Galeria Foksal/Gallery Fok-
sal, Warszawa (Stanisław Dróżdż Pomysły)

The second function of teaching aids is facilitating thought processes.
Three works by Stanislaw Dróżdż, presented here, can initiate a pro-

cess of thought in different areas of mathematics, and at the same time,
through their very structure, they can help pupils to carry out reasoning.
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Work 9. Bez tytułu (białe – czarne)/untitled (white – black), 1970,
http://www. drozdz.art.pl

The first of these is the work bez tytułu (białe – czarne)/untitled
(white – black), 1970 (work 9), followed by some questions: Is there any
message in the top left hand corner and the bottom right hand corner?If
so, what is it, and why? If not, why not?
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Work 10. Bez tytułu (cyfry rzymskie)/untitled (Roman numerals), 2006,
http:// www.drozdz.art.pl

The second one is the work bez tytułu (cyfry rzymskie)/untitled (Ro-
man numerals), 2006 (work 10) with questions: Are the three parts of this
work somehow related to each other? If so, how? If not, why not?
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Work 11. Bez tytułu (potęgowanie)/untitled (exponentiation), 1981

The third work is bez tytułu (potęgowanie)/untitled (exponentiation),
1981 (work 11), and the questions are: What sort of exponentiation is
being dealt with? Why?

Each situation presented here allows you to touch certain mathemat-
ical problems.
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Work 12. Język i matematyka/Language and Mathematics, 1968,
http://www. drozdz.art.pl

To express our thoughts we use symbols. The last work that I want
to present in this section is Język i matematyka /Language and Math-
ematics, 1968 (work 12). The author put together the symbols used in
language and mathematics. Examining this juxtaposition, as well as each
part separately, may make students consider some questions, e.g.: Do all
the signs listed here have the same functions? If so, what are they? If not,
how do they differ? Are those all the symbols used in a given field (as far
as you know)? If not, which ones were left out and why? Are there any
symbols that occur in both parts? If so, do they mean the same? After
this analysis (which will proceed differently at each level of education),
the symbols used and the contexts of their use will become clearer for
students. The conversation related to this work can also be seen as a
starting point to explore the history of presented objects.

The third function of teaching aids is assisting pupils in exercises
aimed at acquiring practical skills. ”Practical skills” can be understood in
several ways. Among others, it might mean practical use of mathematics
in everyday life (whether private or professional); it could be perception
of mathematics in our surroundings (in the works of nature or creations
of human hands), and it can also be physical activity which helps to
investigate a mathematical problem.

In this section I will present some works by Stanislaw Dróżdż that
use mathematics so that firstly, they present some task, the analysis of
which requires a selection of a suitable mathematical model for a given
situation.
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Work 13. Klepsydra (było, jest, będzie)/The Hourglass (it was, it is, it will
be), 1967, Muzeum Narodowe/National Museum Wrocław

The work Klepsydra (było, jest, będzie)/The Hourglass (there was,
there is, there will be), 1967 (work 13) is exhibited in the National Mu-
seum in Wroclaw. Interpreting this work performs the fourth function to
be fulfilled by teaching aids – inspiring students’ emotional experiences.
Very simply and aptly, the author shows how insignificant is the part
of reality in which we live, and at the same time how unique it is. The
mathematical task is connected with the poet’s successive approaches to
this work.

In Wroclaw Contemporary Museum the work can be seen in extensive
form (work 14). With a question, Why does the presented series consist
of 54 boards?, it poses a very interesting combinatorial problem. A prac-
tical approach to the theoretical mathematical situation is realized here
through the use of a specific artistic work as a starting point, which allows
us to apply and justify the use of an appropriate theoretical model – In
order to define such work, did the artist use permutations, variations or
combinations, with or without repetition?

In this regard, we can use some other works by Stanislaw Dróżdż like
“i” (fragmenty)/“and” (fragments), 1970-1997 (work 15) and bez tytułu
(równa się, nie równa się)/untitled (equal to, not equal to),1971-1972
(work 16), but the culmination is the work Alea iacta est, 2003 (work
17a) with which the author represented Poland at the 50th Venice Bien-
nale. The latter work can be used like discussed earlier Hourglass, giving
instructions (work 17b), which the author posted on display in many lan-
guages, but you can also(without giving instructions) ask: How many dice
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are there lining the walls of this pavillion,if you can find there all possible
outcomes of throwing six classical dice? Considering different rules that
you can use “lining the walls", there may be more than one answer.
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Work 14. Klepsydra (było, jest, będzie)/The Hourglass (it was, it is, it will
be), 1967-1990, shows a fragment of work consisting of 54 boards, Muzeum
Współczesne/Contemporary Museum, Wrocław
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Work 15. “i” (fragmenty)/“and” (fragments), 1970-1997,
http://www.drozdz.art.pl
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Work 16. Bez tytułu (równa się, nie równa się)/untitled (equal to, not equal
to), 1971-1972, http://www.drozdz.art.pl
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Work 17a. Alea iacta est, 2003, 50. Biennale w Wenecji, Pawilon Polski,
http://www.drozdz.art.pl

a game of dice
rules of the game by Stanisław Dróżdż:
there are 46,656 possible results of casting 6 dice
all these configurations have been placed on the wall.
take the dice lying on the table and cast them
align them in one row
try to find exactly the same combination on the wall
If you find it, you win, if not, you lose,
and it’s me who wins.

Work 17b. Instrukcja – część pracy Alea iacta est, 2003, 50. Biennale w Wene-
cji, Pawilon Polski, http://www.drozdz.art.pl
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Work 18. Czasoprzestrzennie (OD – DO)/Temporally – Spatially (FROM –
TO), 1969–1993, fragment of work consisting of 82 boards, http://www.drozdz.
art.pl
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Work 19. Bez tytułu (wykrzykniki i znaki zapytania)/untitled (exclamation,
question marks), 2001, fragment of work consisting of 13 boards, http://www.
drozdz.art.pl

The work Czasoprzestrzennie (OD – DO)/Temporally – Spatially
(FROM – TO), 1969–1993 (work 18) and bez tytułu (wykrzykniki i znaki
zapytania)/untitled (exclamation, question marks), 2001 (work 19) can be
used to locate and describe geometric transformations we would deal with
if we wanted to turn one work into another. Here, depending on the age
and abilities of students, we can have a practical approach to a theoretical
mathematical situation reduced to finding a suitable transformation and
describing it with known symbols, or, alternatively, equipping students
with appropriate copies, eg. on transparencies, physically allowing them
to find appropriate transformations and try to describe them.

c ©
A

n
n
a

D
r
ó
ż
d
ż

Work 20. Tryptyk (Niepewność – Wahanie – Pewność)/Triptych (Uncertainty
– Hesitation – Certainty), 1967, http://www.drozdz.art.pl
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Work 21. Bez tytułu (przecinki, zera)/untitled (commas, zeros), 2006,
http://www.drozdz.art.pl
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Work 22. Bez tytułu (koło)/untitled (circle), 1971-1972, Stanisław Dróżdż.
Początekoniec. Pojęciokształty. Poezja konkretna Prace z lat 1967-2007

For this purpose, we can also use other works by the poet, for ex-
ample: Tryptyk (Niepewność – Wahanie – Pewność)/Triptych (Uncer-
tainty – Hesitation – Certainty), 1967 (work 20), bez tytułu (przecinki,
zera)/untitled (commas, zeros), 2006 (work 21) or bez tytułu (koło)/unti-
tled (circle), 1971-1972 (work 22). One version of the latter work is to be
found in the public space in Wroclaw, so discussion can be carried out
while physically facing the work, outdoors.

The fourth function of teaching aids is displaying materials that in-
spire students’ emotional experience.

The implementation of this function with the use of works by Stanis-
ław Dróżdż has already been mentioned while discussing Continuum, 1973
(work 6) and Klepsydra (było, jest, będzie) /The Hourglass (there was,
there is, there will be), 1967 (work 13). It can also refer to the work
Tryptyk (Niepewność – Wahanie – Pewność)/Triptych (Uncertainty –
Hesitation – Certainty),1967 (work 20), but there are two other pieces,
in which I see the essence of mathematical objects used to describe life
situations.



[376℄ Agata Hoffmann

c ©
A

n
n
a

D
r
ó
ż
d
ż

Work 23. Samotność/Loneliness, 1967, http://www.drozdz.art.pl

The first work is Samotność/Loneliness, 1967 (work 23). It shows
number 1 multiplied, which on the one hand represents a whole, but on
the other hand also means individuality. Replicated with a clear sense of
space, it becomes a work of art – a wonderful interpretation of the title
Loneliness (alienation, lack of communication).
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Work 24. Bez tytułu (życie – śmierć)/untitled (life – death), 1969,
http://www. drozdz.art.pl

The second work is bez tytułu (życie – śmierć)/untitled (life – death),
1970 (work 24). The terms describing both conditions begin simultane-
ously – which is indicated by the simultaneity of the existence of both.
But both words are written in such a way that they do not overlap – in
two parallel lines – which in turn indicates their separation and indepen-
dence.

Additionally, the author wrote these conditions using two different
directions – vertical and horizontal. Thus, right angles have been sug-
gested, which may symbolize intersecting fates of different lives, but in a
very “orderly” way (the only perpendicular lines divide the plane into four
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equal parts). At the same time, the perspective from which we view this
work is changing what we see (which is not without significance). When
we look at it very closely (in one’s youth), we are able to see only se-
lected parts. With increasing distance (elapsed time), we better perceive
the whole, we see the relationships. From a sufficiently large distance, we
see only the outline of two straight perpendicular lines.

All these interpretations shown here and uses of works by the poet
Stanislaw Dróżdż are mine and are not unique, but the presented exam-
ples prove that different objects might become teaching aids. For those
visiting Wrocław, it might be worth knowing that two outdoor projects
can be seen while walking around the city: one of the variants is Hour-
glass – on the building of Wrocław Contemporary Museum and untitled
(circle) – in Nowy Targ square, in front of the Municipal Office.

I offer heartfelt thanks to Ms Anna Dróżdż for providing the photos
of the works by Stanisław Dróżdż and contact with the people involved in
his work; to Ms Ewa Trojanowska for providing valuable guidance related
to the description of the works and the history of their formation.
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Cirle and sphere � geometrial speulations

in philosophy

Abstrat. The circle and the sphere, in philosophical speculations,
exist as symbols of perfection, as metaphors of divinity, as mod-
els of eternity as well as approximations of essential properties of
cognitive acts. Their geometry is also an excuse for visual specula-
tions of an artistic nature. In this article, we discuss some chosen
metaphors based on the circle and sphere which refer to both on-
tological and epistemological issues pertaining to various models of
knowledge and the cognitive process.

1. Introdution

1

The short essay by Jorge Luis Borges “The Fearful Sphere of Pas-
cal” starts out with words which could stand in as the motto of this
article: “It may be that universal history is the history of a handful of
metaphors” (Borges, 1964, p. 168). Borges describes the metaphors based
on a sphere which appear in history by referring to among others Empe-
docles’, Giordano Bruno’s or Pascal’s speculations. This essay focuses
around the famous metaphor quoted after Alain de Lille, in which “God
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is an intelligible sphere whose centre is everywhere and whose circumfer-
ence is nowhere” (Borges, 1964, p. 169) 2. This article is also a review of
other philosophical metaphors based on roundness pertaining not only to
the sphere but also to the circle. In this instance we refer to the thoughts
of Parmenides, Plato, Nicolas of Cusa, Quine, Heller and Twardowski.
Metaphor is understood here broadly in the sense proposed by Lakoff
and Johnson (1980) as a certain model representing chosen aspects of a
given issue in terms characteristic for a different issue.

The circle and the sphere, in philosophical speculations, serve as sym-
bols of perfection, as metaphors of divinity, as models of eternity as well
as approximations of properties of cognitive acts. Their geometry may
also be an excuse for artistic visual speculations. In our proposed ap-
proach, art, hand in hand with mathematics and philosophy becomes a
cognitive tool – it constitutes not only an aesthetic complementation of
scientific cognition, but it is its reinforcement, deepening and extension.

The article consists of two parts. In the first, we discuss metaphors
which appear in ontological problems. Ontology is treated here as the
most general science on what there is and what may be, and speaking
in the language of traditional philosophy: as the science of existence or
being. Within such a wide understanding of ontology we are allowed to
also take up metaphysical issues which are related to real existence and
not only possible existence 3. In the second part of the article we discuss
epistemological traits pertaining to various models of knowledge and cog-
nitive process.

In this article we mainly focus on metaphors which are based on the
analysis of the geometrical properties of the sphere and the circle and not
only on the superficial properties of these figures visible to the naked eye.
This harmonious fusion of geometrical analysis, philosophical speculation
and artistic visualization offers an opportunity for wider comprehension
and an intelligible approximation of the studied subject.

2. Original: “Deus est spaera intelligibilis, cuius centrum ubique, circumferentia
nusquam” (Alanus De Insulis, VII PL 210, 0627A).

3. On the relation between metaphysics and ontology see (Perzanowski, 1988, pp.
87–90).
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2. Cirle and sphere in ontologial metaphors

2.1. Spherial vision of reality by Parmenides

Parmenides was supposedly the author of one treaty of which only a
few fragments have been preserved 4. However his thought has played an
important part not only in Greek philosophy but also in later philoso-
phies. In the Prologue to his poem Parmenides recalls the motif of a
journey; a journey from the land of night to the land of day and light.
That journey symbolizes cognition which starts with sensual experience
but does not end with just that. As Parmenides wrote, the presumptions
of mortals are based on senses, but the truth may not come from pre-
sumptions alone. Therefore, true cognition needs reason to act as a guide.
A goddess welcoming travelers says (Kirk and Raven, 1957, p. 267):

It is no ill chance, but right and justice, that has sent thee forth
to travel on this way. Far indeed does it lie from the beaten track
of men. Meet it is that thou shouldst learn all things, as well the
unshaken heart of well-rounded truth, as the opinions of mortals in
which is no true belief at all.

As early as in the prologue the motif of roundness appears. Reason leads
to true cognition, to a Truth which is rounded and similar to a sphere.

Parmenides following the path of light and reason, described exis-
tence [Parmenides called it “true reality”] in many aspects. Most of all
true reality is what is and not what may be. It has not been born and is
indestructible, it has never been created and it cannot die. It is a whole-
ness which is filled, in every part, in the same way. It may not be more in
one place and less in the other, there is the same amount of true reality in
every place. True reality is continuous and undividable. It is also unim-
pressed and unchangeable. Such a characterization of true reality leads
to regarding it as perfect. In the rationale of that perfection Parmenides
writes: “But since there is a furthest limit, it is bounded on every side,
like the bulk of a well-rounded sphere, from the centre equally balanced
in every direction” (Kirk and Raven, 1957, p. 276). Therefore true reality
resembles a sphere, it is sphere-like. The interpretation of that fragment is
not a trouble-free task; it is especially hard to establish how Parmenides
understood the limit. This fragment may be understood, for instance,
that there is the furthest limit of true reality which is the sphere which
surrounds it, while true reality is similar to an open ball i.e. the space
inside a sphere (without the boundary points).

4. More on the life and work of Parmenides may be found in (Kirk and Raven,
1957, pp. 263–285).
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In the contemplations of Parmenides, although they are not unam-
biguous, the motif of roundness as one of the attributes of perfection has
come up. True reality is perfect; therefore it is similar to a sphere. What
testifies to that perfection? True reality is “(. . . ) equal to itself on every
side, it rests uniformly within its limits” (Kirk and Raven, 1957, p. 276).

2.2. Plato's roundness of the world

The idea of perfection by Parmenides was taken up and developed
by Plato. In the dialog Timajos he describes the creation of the world.
The organizer of the world’s creation, the world’s craftsman is the pla-
tonic Demiurg (Greek: demiurgos). Demiurg using the eternal and perfect
models has created the world out of fire, air, water and earth. The world’s
perfection which is the reflection of the form’s perfection is demonstrated
in the spherical shape the world was given (Plato, 33 BC):

Wherefore he made the world in the form of a globe, round as from
a lathe, having its extremes in every direction equidistant from the
centre, the most perfect and the most like itself of all figures; for
he considered that the like is infinitely fairer than the unlike.

Amongst other properties, what proves the sphere’s perfection is the
smoothness of its surface. That smoothness for Plato symbolized self-
sufficiency which was understood by him as the absence of any needs.
Although Plato understood the world as a living creature, he stated that
no limbs protrude from it (legs or arms) which might serve as means
to grasp onto subjects or to move. Beyond the world there was nothing
that could be held onto and nowhere it could move to. The spherical
shape of the world resulted in the fact that it did not need anything
else for its existence. Although Plato’s idea of the world described here
may seem bizarre or even grotesque to a contemporary reader, it carries
an interesting ontological reference between the spherical shape and self-
sufficiency. If we interpret self-sufficiency as existential self-sufficiency, i.e.
that a given object exists independently of the existence of other objects,
then surprisingly a sphere would become a symbol of one of the most
vital characteristics in contemporary ontology 5.

The fact that according to Plato the universe is spherical, results in
the impossibility to distinguish between its “top” and “bottom” because
the surface of the world is the same everywhere. Perfection does not
differentiate into the right and left side, top and bottom side or front and
back side. Even if inside the world there was a solid, it could not be going
towards the circumference of the world towards the top or towards the

5. See (Ingarden, 1960, p. 132).
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bottom because each edge part of the world seen from the inside is the
same and rounded the same way (Plato, 62 DE).

Plato’s world was not motionless but it moved in a perfect way, i.e.
uniformly along a circle. Plato also probably thought that the world re-
volved around its own axis. He also mentioned seven planets which move
along circles around the earth. Along the circle closest to the earth the
moon was moving, whereas the sun in Platonist cosmogony circled around
the earth in the second cycle (Plato, 38 CD). The circling of the planets
along circles created day and night, month and year – a temporal se-
quence. The creation of time was therefore determined by among others
roundness and a circular movement.

While presenting the creation of the world Plato also described the
creation of a human being. The most perfect part of the human body is
the head because inside it – according to Plato – the mind is located.
The head should therefore be of a perfect shape too. That is why the
gods copied the perfect shape and gave the human head the shape of a
sphere. The following parts of the human body were created in a way to
fulfill the orders given by the most divine and round body part (Plato,
XVI D). In the Platonist cosmogony, perfection (but also divinity) of the
human mind and the perfection of the world, were met in the metaphor
based on roundness.

2.3. Geometrial speulations by Niolas of Cusa

For Nicolas of Cusa (also called Cusanus) the analysis of geometri-
cal properties of infinite objects became the basis for speculations of a
philosophical-theological nature. In the work On Learned Ignorance he
discusses the relationship between the straight line and a curved line and
notices that “(. . . ) the circumference of the maximum circle, which can-
not be greater, is minimally curved and therefore maximally straight”
(Nicholas of Cusa, 1985, p. 21). Therefore the circumference of an indef-
inite circle must be the same as the straight line. What Cusanus could
only have imagined, today we are easily able to present in the form of a
moving picture. Figure 1 presents a shot from an animated loop showing
growing circles, the arches of which constantly tend to a straight line.

The animation dependent on time may only present a potential iden-
tity of a circle and a straight line. Nicolas of Cusa however, when he
wrote about the indefinite circle had actual identity in mind and that
is the identity he uses to refer to God, whom he describes there as the
Maximum. Out of the features of the Maximum, paying particular at-
tention to his unity when he writes that “(. . . ) for in the Maximum all
difference is identity” (Nicholas of Cusa, 1985, p. 35). The unity is “(. . . )
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exhibited by the infinite circle, which is eternal, without beginning and
end, indivisibly the most one and the most encompassing” (Nicholas of
Cusa, 1985, p. 35). The center of an infinite circle is the beginning of
everything, the infinite circumference encapsulates everything, and the
infinite diameter penetrates everything.

Figure 1. A shot from the animation Limits of the Circle (Granice koła, J. Jer-
najczyk, 2015).

Revolution of a circle around the diameter creates a sphere. It may be
said that the sphere is potentially included in a circle, and using Nicolas
of Cusa’s terminology it is enfolded inside a circle. The finite circle is, of
course, a sphere only in a potential sense – it has the ability to revolve.
However an infinite circle is an actual sphere. That is why the spherical
pertains here to the existence of the Maximum in the act. Just as the
sphere is an actual line or a circle, in the same way the Maximum is
supposed to be the actuality of all things (Nicholas of Cusa, 1985, p. 38).

The ontological metaphor of a sphere returns and is developed in one
of the later works of Nicolas of Cusa – in the dialog The Bowling-Game.
The description of a game popular in his times became a starting point
for deliberations on the properties of the world and God.

Roundness leads to eternity. Both in a circle and in a sphere it is
impossible to distinguish a point which may be the beginning or the
end. Circles and spheres which have no beginning and no end become
the model of eternity. Because the most perfect form of eternity in the
Cusanus’ understanding is God, the sphericity – like for Plato – is related
to the divine. In the Nicolas of Cusa understanding the world is spherical,
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therefore it is eternal (Nicholas of Cusa, 2000, p. 1189–90). It is not
however a perfect sphere; it is created on the basis of a model of a perfect
sphere.

The roundness of a perfect sphere is not visible (Nicholas of Cusa,
2000, p. 1185):

For since the surface of a [true] sphere is everywhere equally distant
from its center, the outer-extremity of what is [perfectly] round-
given that it ends at an indivisible point-remains altogether invisi-
ble to our eyes. For we see only what is divisible and quantitative.

We may not see a single point and what is visible may not consist of
points. So if the limits of a perfect roundness are set out by an indivisible
point, according to Cusanus, it may not be visible. Although roundness
as such may not be seen, that does not mean that a round thing cannot
be seen. Indeed, we see what is material, whereas in the material only
the image of roundness is realized and not the true roundness (Nicholas
of Cusa, 2000, p. 1186).

Roundness in itself includes the ability to move. Round objects move
more easily than non-round, angular objects. In order to move a real
sphere needs a mover, someone who will provide its impetus. Whereas
perfect roundness does not need an external mover, it is able to move on
its own, it is both the moved one and the mover. What is interesting, for
Nicolas of Cusa the soul also moves (the movement of soul is life) in a
circular motion. The movement of the soul returns to itself, as in the case
of thinking about thinking, it moves itself. If the movement of a soul is
circular and as we mentioned before if a circle is eternity, then the life
of a soul is perpetual (Nicholas of Cusa, 2000, p. 1197). Cusanus proves
at this point 6. The immortality of the soul mainly on the basis of the
roundness of its moves.

The metaphor of a sphere finds its reflection also in ethical delibera-
tions. In the game described in the dialog, a bowling-ball has to be thrown
from an agreed place so that it stops closest to the center of a previously
drawn circle. Around the central point there are larger and larger circles
drawn, which are given a specified number of points. Depending on the
circle in which a bowling-ball stops, the player gets the respective amount
of points (the closer to the center – the higher the score). The one who
obtains 34 points first is the winner. The format of the game symbol-
izes the movement of our soul. Each bowling-ball sets out an adequate
shape of movement, there is also no possibility that two bowling-balls

6. The notion of proof is not used here in a strictly mathematical sense; it rather
stands for speculative reasoning in the scope of metaphysics or mathematical mysti-
cism.
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could stop at the same place. The aim of the game is the same as in life:
to get as close as possible to the center of the circle which symbolizes
God. In order to ensure that the bowling-ball stops near the center, the
player must have some experience, which may be achieved only thanks
to continual attempts. It is similar to one’s exercising in virtue (Nicholas
of Cusa, 2000, p. 1029):

(. . . ) each man, by exerting himself, must govern the inclinations
and tendencies of his own bowling-ball. After a while, made temper-
ate in this manner, he strives to find a way whereby the curvature
of his bowling-ball does not prevent its arriving at the Circle of
Life. This is the symbolic power of the game: that even a curved
bowling-ball can be controlled by the practice of virtue, so that
after many unstable deviations of movement, the ball stops in the
Kingdom of Life.

In the dialog The Bowling-Game a famous metaphor also appears, the
traits of which Borges was tracking in the essay referred to above “The
Fearful Sphere of Pascal”. In the version presented by Nicolas of Cusa
instead of a sphere a circle is present: “(. . . ) God is a Circle whose Center
is everywhere (. . . )” (Nicholas of Cusa, 2000, p. 1226). The second part
of the metaphor describing the circumference not existing anywhere was
here omitted. It is worth observing that the metaphor makes sense both in
the case of a sphere and a circle, because the center and the circumference
are the basic properties of both objects. Only the dimension is different in
which the two versions of metaphors are submerged. For those to whom
the three-dimensional dimension seemed to be the highest one, a sphere
(a closed ball) had to be the most appropriate object to present God.
However today, assuming the existence of infinite dimensions, we would
not tie the idea of perfection to a particular dimension, so we would not
relate more perfection to a three-dimensional sphere (a closed ball) than
to a two-dimensional circle (a disk). Perhaps also the thought of Nicolas
of Cusa who did prove the identicality of a circle and a sphere, would
have gone that direction 7.

7. Rudiments of many concepts characteristic for contemporary mathematics may
be found in the papers of Nicolas of Cusa, among others from the area of non-Euclidean
geometry and topology.
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3. Cirle in epistemologial metaphors

3.1. Sientifi knowledge as a dynami irle

Willard Van Orman Quine, in Two Dogmas of Empiricism – one of
the most influential philosophical essays of the 20th century – states that:
“(. . . ) total science is like a field of force whose boundary conditions are
experience. A conflict with experience at the periphery occasions read-
justments in the interior of the field” (Quine, 1951, p. 39). Explaining
the interior structure of the area of the circle of scientific knowledge, in
particular the relations between its outline and the interior, Quine writes:
“The edge of the system must be kept squared with experience; the rest,
with all its elaborate myths or fictions, has as its objective the simplicity
of laws” (1951, p. 42). The force field referred to by Quine is naturally
associated with a certain roundness – a circle or a sphere. Bearing that
in mind Michał Heller developed the following metaphor: (1997, p. 7)

If following Quine we compare scientific knowledge to the interior
of a circle, what is yet unexamined will remain on the outside of the
circle, and the circumference of the circle will be the boundary of
knowledge – a place in which our knowledge meets ignorance. The
circumference of that circle is constructed out of scientific questions
– problems arising out of what we know (from the interior of the
circle) but directed towards our ignorance (towards the exterior of
the circle). Along with the advance of knowledge, in line with the
growth of scientific achievements, the circle symbolizing scientific
knowledge widens. Let us note however that at the same time the
circumference of that circle grows too – the number of question
marks increases! 8

It should be emphasized that there is a significant difference between
the two approaches. As long as Quine does not specify the shape and the
size of the force field expressly focusing mainly on the changes that go on
inside it (as a result of the reaction with experience), Heller accentuates
the very process of the circle’s circumference growth, which would indi-
cate accepting the cumulative model of knowledge. Whereby, obviously,
Heller’s metaphor does not exclude the modification of the inside of the
circle.

8. Transl. A. & J. Hamilton.
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Figure 2. Model of evolution of a growing circle of knowledge according
to Heller.

The increase of new questions noted by Heller which continuously
accompanies the progress of scientific knowledge allows for a new – dy-
namic – reading of the Socratic maxim “I know that I know nothing”. If
we recognize that along with the advance of knowledge the number of
unsolved problems also grows and that the process may have no end, the
constatation that the area of ignorance indefinitely surpasses the area of
our knowledge is justified. The vision presented here seems pessimistic at
first glance – we will never reach or at least approximate the complete-
ness of knowledge about the world. Nevertheless, this metaphor may also
be read as optimistic, as indicating the potential for perpetual develop-
ment. If there are always new problems which require solving, the scholars
will never rest in their quest. Such an optimistic overtone we can find in
the words by Bertrand Russell, who described the consequences of the
discovery of non-Euclidean geometries in the spirit of Heller’s metaphor
(Russell, 1912, pp. 230–231):

Thus, while our knowledge of what is has become less than it was
formerly supposed to be, our knowledge of what may be is enor-
mously increased. Instead of being shut in within narrow walls, of
which every nook and cranny could be explored, we find ourselves
in an open world of free possibilities, where much remains unknown
because there is so much to know.

The metaphor of the circle of knowledge also constitutes an inter-
esting illustration of relations which take place between the science and
philosophy. According to Russell (1912, p. 240) “those questions which are
already capable of definite answers are placed in the sciences, while those
only to which, at present, no definite answer can be given, remain to form
the residue which is called philosophy”. Referring to Heller’s metaphor we
may say that the domain of philosophy spreads right beyond the circum-
ference of the circle of knowledge.
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3.2. Approximation of an ideal irle in metaphors of the pursuit of truth

and knowledge

Nicolas of Cusa assumed a geometrical circle as the symbol of absolute
truth, whereas the human quest to learn the truth he presented as a
process of approximating the circle by polygons inscribed in it (Nicholas
of Cusa, 1985, p. 8):

Hence, the intellect, which is not truth, never comprehends truth
so precisely that truth cannot be comprehended infinitely more
precisely. For the intellect is to truth as [an inscribed] polygon is to
[the inscribing] circle. The more angles the inscribed polygon has
the more similar it is to the circle. However, even if the number
of its angles is increased ad infinitum, the polygon never becomes
equal [to the circle] unless it is resolved into an identity with the
circle.

Figure 3. Visualization of the pursuit of truth by the intellect accord-
ing to Nicolas of Cusa.

This metaphor is based on the mathematical method of exhaustion
known since antiquity which has been used to approximate the area of
figures and volume of solids of which it was not known how to measure
them in a direct way. In order to approximate the area of a given fig-
ure, simpler figures of which the area it was known how to measure were
circumscribed about and inscribed in that figure. The action was simi-
lar in terms of solids. Eudoxus is considered the inventor of the method
of exhaustion whereas it was perfected by Archimedes who was able to
approximate the area of a circle with astonishing accuracy by circum-
scribing about and inscribing regular polygons into it, starting with a
hexagon and ending with as much as a 96-sided regular polygon (Katz,
2009, p. 101). Along with the increase of the number of angles, the values
of the areas of the circumscribed and inscribed polygons approach each
other and the area of a circle included within them was approximated
more and more precisely (fig. 4).
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Figure 4. Area of a circle approximated in the method of exhaustion by circum-
scribing and inscribing regular polygons in it.

Although the method of exhaustion theoretically enabled the calcu-
lation of the circle’s area with an arbitrary accuracy, its absolute value
could not be measured 9. It is not surprising then that Nicolas of Cusa
employed the visualization of that method (fig. 3) in his metaphor of pur-
suing the truth. In illustrating the pursuit of human intellect he limited it
only to polygons inscribed in a circle since the circle here symbolizes the
truth about the world which is the property of God (or even is identified
with God). It would be incorrect to illustrate human intellect in the form
of circumscribed polygons because they transgress the limits of a circle.

Contemporarily it is assumed that all the geometrical properties of
a circle have already been discovered (Davis and Hersh, 1981). What
is interesting is that when we visualize that figure, in practice we use
the archaic method of approximation which is much less subtle than the
ancient method of exhaustion. On digital screen circles, ellipses or any
curves are represented with the help of tiny squares – pixels. What to
us seems like a smooth circle in reality is only its illusion. The visual
effect of smoothness achieved through increasing the resolution of the
matrix (increasing the number of pixels and decreasing their size) but
also through using additional algorithms of optical edge smoothing which
is called antialiasing (Hearn and Baker, 1997, pp. 171–180).

With reference to Heller’s growing circle of knowledge and the dis-
crete structure of screen matrix, an artistic work was created which is an
individual visual metaphor of the evolution of scientific knowledge (The
Circle of Knowledge/Koło wiedzy, J. Jernajczyk, 2008). The idea of com-
plete knowledge was expressed here similarly to the way it was done by
Cusanus, in the form of a circle. The limited human knowledge is pre-
sented by a figure built out of pixels which approximates an ideal circle.

9. Currently we are also unable to measure the value of a circle of a given radius,
because in the ratio of the area and the radius the irrational number pi is included,
which cannot be represented as terminating or repeating decimals. Every final result
is then only an approximation.
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The evolution of knowledge corresponds with the process of smoothing
the edges of that figure. The first rough approximation of a circle is a
square which through dichotomist divisions that take place in two di-
mensions slowly start transforming into a shape which resembles a circle
more and more. As a result of consecutively dividing the pixels which
are its constituents are becoming ever finer. The ones which are located
outside the limits of the model circle are rejected and the entire figure is
smoothed (fig. 5). Despite the fact that at some point we may have the
impression that we are looking at a smooth circle, blowing up any frag-
ment of the figure reveals that the pixels exist there permanently. The
smoothing process, similar to the development of knowledge, potentially
may go on ad infinitum 10.

Figure 5. Selected stages of a figure’s evolution in the interactive installation The
Circle of Knowledge (Koło wiedzy, J. Jernajczyk, 2008).

This metaphor similar to the metaphor of Cusanus is Platonic in
character because it assumes that the ideal of absolute knowledge exists.
Here it is presented as a circle which is the aim one should pursue. The
essence of that evolution is not expanding the area of the figure like it
was in Heller’s metaphor but smoothing its edges. The development of
knowledge is therefore presented here as a process of making continuous
corrections and detailing and not a cumulative process which consists in
the permanent growth of factual resources. An essential element of that
process is rejecting former statements and convictions which along with
the development of science have turned out to be outdated 11. Falsified
statements are symbolized here by falling off pixels which are beyond the
perimeter of the ideal circle.

10. Three epistemological metaphors based on the circle which are discussed in this
section, pertain only to the relationship between the “knowledge field” and experience.
They describe what happens on the contact point of knowledge and ignorance. They
do not discuss changes which happen inside that field. Quine pointed out in his essay
that under the impact of experience, the internal organisation of the knowledge field
is changed (Quine, 1951).

11. An example of such obsolescence of knowledge was the fate of Aristotelian
physics.
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Figure 6. The Circle of Knowledge/Koło wiedzy (J. Jernajczyk,
digital print, 100 × 100 cm, 2008). Graphic version presenting 4
stages of the figure’s evolution in one image (dynamic version can
be find on: https://youtu.be/TIw5o2Gjaks).

3.3. Metaphor of the researh irle by Kazimierz Twardowski

Considering the two key aspects of the circle – its center and cir-
cumference – for each direction set out by radii, two directions may be
distinguished: from the center to the circumference and from the circum-
ference to the center.

Figure 7. Circles with reversed directions of radii.
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Heller’s metaphor presented above – of the development of knowledge
as a continuously growing circle – is an example of the first variant.
Kazimierz Twardowski, the founder of the famous Polish philosophical
school called the Lviv-Warsaw School, describing the process of cognition,
focused on the direction from the circumference to the center. During the
first meeting of the Polish Philosophical Society he is known to have said
(Twardowski, 1904, p. 241):

Like all radii of a circle, although they come from different points
of the circumference, connect and meet in the center of the circle,
the same is for us who want for all the directions of work and
philosophical beliefs in our Society to pursue that one aim, the
exhibition of truth 12.

Twardowski in that fragment refers to a circle as a circle of exercising
philosophical knowledge, the circle of practicing philosophy. Despite the
variety of specialization, diversity of approaches and ways of thinking,
all of them should equally pursue true cognition. The truth, which is the
circle’s center, has therefore become the aim of philosophical pursuit.

The interpretation of Twardowski’s visualization may be easily ex-
panded if we consider not only the areas of philosophy and truth as a
property of judgments. On the grounds of the high specialization of all
detailed sciences and the atomization of scientific research arising out of
that, research projects which combine more than one field of science have
been created. Specialized sciences like biology or sociology, although they
use different methodologies, often research the same subject, for example,
the human being – only in different aspects; biology in an organic aspect,
sociology in the aspect of social behaviors. They are located in different
parts of the circle’s circumference however they direct their attention to-
wards its center – towards one and the same subject. That subject may
be a tangible one, but it could also be an abstract problem. The unity of
the subject enables cross-field research.

Conlusions

The circle and the sphere – mathematical objects – in visual-philoso-
phical speculations take up an important spot. As early as in ancient
cosmogonies the world appeared to the philosophers as rounded and sim-
ilar to a sphere. Perfection based on the idea of an equal distance between
the circumferential points from the center was presented with the use of
a circle and a sphere. Each point of the circle to the same degree is its

12. Transl. A. & J. Hamilton.
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beginning and its end, therefore essentially there is no beginning or end-
ing point. As a result of that the circle has been and still is the symbol
of eternity, everlasting without beginning or end. In popular geometrical
approaches, God, the highest entity, was presented as an infinite circle or
sphere, the center of which is everywhere and the circumference nowhere.

The circle may also serve as a visualization of cognitive processes.
Presenting the development of scientific knowledge in the form of an ever-
growing circle aids to visualize that along with the progress of knowledge
– the growth of the circle’s area, its circumference which sets out the
scope of ignorance also grows. On the other hand, the regular polygon
with a larger and larger number of sides and the figure constructed out of
ever finer pixels, during further divisions become visually indistinguish-
able from the circle which defines their limits, however, they will never be
identical with it. These metaphors reflect the essence of practicing knowl-
edge in the classic sense, i.e. the essence of pursuing the truth – although
we are closer to the truth, reaching its complete cognition will be impos-
sible. The circle also helps to express the unity of cognition independent
of how many people (or groups of scholars) participate in that process.
The points of circumference symbolize various points of view, however
from each of these points of view one and the same point may be seen:
the circle’s center. That point links various societies of researchers and
that metaphor visualizes the interdisciplinary character of contemporary
science. Amongst the points of circumference which are at the same dis-
tance, there is also room for an artistic perspective which complements
the scientific image of the world in a creative way.
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Abstrat paintings, objets, and ations: how promote

geometrial understanding

Abstrat. This paper presents the description and the analysis of
an activity realised in kindergarten with 5-year-old children. The
starting point is a painting of Wassily Kandinsky, titled “Soft Hard”,
and its reproduction made by the pupils, following particular tasks
assigned by the teacher. Different pedagogical and psychological
studies about visual perception deal with the laws of visual data
organisation. They show that visual perception may hinder the
ways of seeing figures; in other words, young pupils observe cer-
tain figures more than others in a picture. With reference to the
perception of images of children who are 4− 8 years old, some ped-
agogical studies show that in the presence of abstract art works,
the pupils show a “referential need” to identify a likeness, in order
to find out what object there are in the painting. Starting from this
assumption, in collaboration with a kindergarten teacher, I planned
an activity based on a copy of each geometrical shape present in
the chosen Kandinsky painting, and its reproduction, made by glu-
ing the shapes onto a sheet of paper. From a mathematical point
of view, this activity not only involves concepts such as “top or
bottom” and “front or back,” but also symmetry and geometri-
cal transformations such as rotations and similarity, as well as the
mutual positions of the geometrical shapes on the piece of paper.
The analysis of the results provides us with interesting information
about a child’s approach to geometrical understanding.
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1. Introdution

In recent times, the diffusion of communication by the mass media
has led researchers to study the role of different languages and systems
of representation as new important aspects in education. “Art education”
has been present in Italian primary school curricula since 1985. The main
idea is that the artistic culture has a formative role, as documented by
research on art and perception. In particular, in the National Indications
for the curriculum of kindergarten schools (4 September 2012, p. 20), we
can read:

The encounter of children with art is an occasion for them to ob-
serve the world that is around them with different eyes. The materi-
als explored by the senses, [. . .] the observation of works (paintings,
museum, [. . .]) help to improve the perceptive capabilities, to cul-
tivate the pleasure of the fruition [. . .] and to approach the culture
and the artistic heritage.

In other words, while previously attention was focused on the ’pro-
duction’ (spontaneous drawing, etc.), now the ’fruition’ is also important:
looking at it not as a passive action, but as a dynamic activity of shapes,
colours and, configurations selection.

The interactions between mathematical and artistic experience offer a
broad field for exploration. In particular, the idea of this paper arises from
the abstract art of Wassily Kandinsky (1866-1944). He affirms that art
originates from space and time and he identifies the concepts of ’point’,
’line’, and ’surface’ as fundamental.

For Kandinsky, the issue of abstraction was propelled by the desire (or
need) to explore the qualities of form, line, colour and facture as indepen-
dent formal entities, rather than as pictorial elements for the depiction
of subjects from life (Guy et al., 2007, p. 28).

The paintings of this artist are particularly suitable for a mathemati-
cal investigation, since they contain many traditional geometrical shapes
placed in reciprocal positions following specific, from an artistic and aes-
thetic point of view, choices. The pleasant colours used and the apparent
simplicity of the paintings can give very young students the motivation to
observe and to investigate them. Nevertheless, following Arnheim (1987,
p. 143), the images do not explain themselves, so it is necessary to study
and plan activities which allow for observation and fruition. In other
words, the first approach to an artistic painting can be promoted by the
questions: “Do you agree with this painting? Why? What can you see?
What does it represent?” During the second time, it would be suitable
to propose an activity of ’reading the painting’ (fruition), possibly moti-
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vated by the need of its reproduction. The didactic activity described in
the paper is based on this idea.

2. Theoretial framework

The first approach to geometrical concepts occurs in the so-called
“physiologic space”, as when the child sees and touches objects, it moves
them. Following Van Hiele’s theory (1986), the educational process passes
through different levels. The first one is the “visual level”, in which con-
cepts develop starting from the observation of reality. It is very important
for spatial knowledge, in which pupils recognise figures and are able to
represent them as mental images. According to psychological studies, per-
ception plays a fundamental role in the visualisation process:

[. . .] by using perception, the visual thought organises itself as the
starting point of insight and reflection, as well as mental activities
which contribute to the formation of concepts (Marchini et al.,
2009, pp. 62-63).

Perception is a process of selection and organization, of cognitive ac-
tivities connected with knowledge and understanding. Nevertheless, vi-
sual perception may hinder the way of seeing geometrical figures. Follow-
ing Duval (2005), this depends on the activity in which one is involved. In
reference to the reading of images made by 4-8 year old children, Mazza
(2001, p. 58) writes:

The subject or the colour seem to be the parameters that determine
the preference of pupils at this age. Even in the presence of abstract
art works pupils show a “referential need” to identify a likeness, to
find the object which “hides itself” behind the apparent oddity.

An important concept involved in painting, starting from its plan-
ning to its realization, is the ’concept of space.’ The canvas is an empty
space which must be organized by placing objects (independent space).
In other geometrical situations, the figures create the space (not inde-
pendent space): “[. . . ] essentially, or primarily, we think about objects (or
about shapes); space only coexists with them” (Speranza, 1997, p. 130).
Usually, the space in a painting is a “microspace”, namely a space that is
manageable with hands and eyes (for instance, a sheet of paper). Some-
times it is also a “mesospace”, manageable only with the eyes (i.e. a wall
in a room).

In this space, the geometrical transformations are more important
than the figures, since they allow for understanding. In particular, among
the isometries, symmetry is a very complex topic. Research document



[400℄ Paola Vighi

the difficulties observed in its understanding. Piaget and Inhelder (1947)
point out the individuation of a ’vertical axis’ of symmetry in very young
pupils. It could be a didactical obstacle, as Brousseau (1983) shows. Swo-
boda (2011) highlights the difference between the static and the dynamic
approach to axial symmetry in pupils who are 4-6 years old. She made an
experiment regarding the creation of a pattern using printed tiles. Firstly,
the tiles were ’equal.’ The second time, she placed a ’symmetrical tile’ in
the pattern. She observed that the children, when asked to reconstruct
the regularity of the pattern, were trying to rotate the new tile instead
of overturning it.

The research questions are:
– Which concept of space emerges from what the children produce?
– Do pupils use geometrical transformations when reproducing the

painting? How?

3. Methodology

The presented research has been performed in a kindergarten school
as the conclusion of a didactic itinerary about geometrical knowledge. It
involved fourteen 5-6 year old pupils, who worked in groups or individ-
ually. The initial idea was to use paintings of abstract art to verify the
acquisition of concepts by the pupils. In particular, the teacher 1 presents
(Fig. 1) the following painting of Kandinsky (Fig. 2) entitled “Soft Hard”
(1927).

Figure 1. Teacher shows the paint-
ing. AAg

Figure 2. “Soft Hard” by Kandinsky
(1927).

1. I wish to thank the teacher Palma Rosa Micheli, Scuola dell’Infanzia Statale
“Lodesana”, Fidenza (PR), Italy, for her collaboration and helpfulness.
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The artist explains it in terms of the contrast between the softness of
the blue background and the hardness of geometrical figures.

In the classroom, the teacher asks the pupils to observe the painting
and to reproduce it, using paper, scissors, and glue. Didactically, the work
involves the recognition and use of geometrical shapes (squares, rectan-
gles, triangles, circles, and shapes with curved boundaries). The geomet-
rical figures usually presented in kindergarten are those suggested from
the structured materials for learning mathematics named “Logic Blocks
of Dienes”. Often, pupils use them to realise free composition, castles,
cars, and so on. In this work, the composition is obliged; it is necessary
to reproduce the Kandinsky painting. It is a very difficult activity that
imposes the observation of the shapes, their reciprocal positions, their
possible superimpositions, their arrangement on the sheet of paper that
represents the background, and possibly using geometrical transforma-
tions (rotations, translations, symmetries).

There are about 20 geometrical shapes in the painting: 1 square, 2
rectangles (the third rectangle can be seen on the right, and it is ob-
tained by connecting two triangles), 2-3 circles, 12 triangles, 3 “moons”
(this word was suggested by the children). The square is placed in a par-
ticular way: two sides are parallel to the hypotenuse of a ’big’ red triangle.
It is the only figure (except the circles) with its sides not parallel to the
sides of the rectangular background. On the contrary, all of the rectangles
are drawn with their sides ’horizontal’ and ’vertical’ regarding the back-
ground. There are three equilateral triangles, four isosceles triangles, and
six right-angled triangles. The three “moons” are typical to Kandinsky
drawings.

Surely, there is an idea of ’non-isotropic space:’ horizontal and vertical
directions permeate the painting. It is also a ’space limited’ by the border
of the sheet of paper.

We can also observe the presence of three symmetrical compositions
of shapes. On the left, the axis of symmetry is a straight line containing
the axes of the triangles. On the right, there is a ’moon’ superimposed on
an isosceles triangle: its axis is the axis of symmetry of the composition.
The three triangles arranged as a tree are symmetrical.

The pupils must observe the painting, look for a shape, and manip-
ulate it with the aim of getting the ’right orientation’ on the sheet of
paper as well as the correct disposition with respect to the other shapes.
This way, they make use of topological concepts such as “inside or out-
side” and the concepts of “top or down” or “forward or back”, “on the left
or on the right” and so on. They must use geometrical transformations
(translations, rotations, symmetries) and apply them to the figures.
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The children have two possibilities of working: gluing the pieces one by
one (Fig. 3), or organizing the disposition of the shapes on the background
and gluing them at the end (Fig. 4). Obviously, the second way allows
for better organization and a better result.

Figure 3. Reproduction without
planning.

Figure 4. Reproduction with
planning.

4. Results

Here, I analyse only the works of three pupils, in terms of the following
criteria:

1. Orientation of shapes with respect to the sheet of paper representing
the background of the painting.

2. Use of geometrical transformations.
3. Arrangement of triangles in copy.

Gabriele’s work and its analysis (see
Fig. 5).
Globally, the reproduction respects the
original disposition of shapes: if the age
of the boy is taken into account, we can
say that it is a good copy. Criterion 1:
the orientation of the shapes is fundamen-
tally respected, with the only exception
being the bicoloured rectangle (which is
also separate from the bigger triangle).
Most of the sides are not ’horizontal’ or Figure 5. Gabriele’s work.

’vertical’ with respect to the background, but it could be caused by a
problem with manipulation during the operation of gluing. Criterion 2:
the symmetries are respected. The square is rotated, though casually. The
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smallest triangles situated on the right and on the bottom of the biggest
triangle are overturned and their colours are swapped. It could be a sign
of a problem connected with the use of the symmetry which is an inverse
isometry. Criterion 3: the sequence of triangles in the tree is incorrect,
since the equilateral should be on the top.

Gaia’s work and its analysis (Fig. 6).
She recognised a ’sailing boat’ on the right
of the Kandinsky painting and, therefore,
in her copy, she tried to make a boat, as-
sembling some pieces nearby. Criterion 1:
on the right, the horizontal and vertical
directions are respected; not in the other
parts. Criterion 2: on the left, the big tri-
angles are without a common axis of sym-
metry. The square is crosswise. On the
right part aloft, the half-moons are placed Figure 6. Gaia’s work.

in an incorrect position in comparison to the biggest triangle, they are
also swapped. Criterion 3: the sequence of black triangles in the ’tree’ is
incorrect; furthermore, there are two equilateral triangles instead of one,
and the bigger one is in the middle.

Dylan’s work and its analysis (Fig. 7).
It is an interesting and original work. Cri-
terion 1: the square appears to be in a
suitable orientation and position. Also,
the rectangles are well-oriented. Criterion
2: The two-coloured rectangle is over-
turned and ’rotated.’ It could be a prob-
lem connected with symmetry. The small-
est triangles are ’symmetric.’ Criterion 3:
the management of the triangles shows
that this child distinguishes neither their

Figure 7. Dylan’s work.

shapes (equilateral or isosceles) nor the sizes (small, medium, big). Con-
sequently, the triangles placed over the circles stay in the interior of the
bigger circle and the tree appears to be very different from the original.
It seems that the word ’triangle’ (and maybe the black colour) guide the
production of this boy, who seems to use a black triangle without ob-
serving its features. In fact, in kindergarten, when a teacher presents the
triangle, typically it is an equilateral one.

The analysis of the protocols seems to show that the sides of the
background do not constitute a reference point for these young pupils.
It is well known that for young children the space is ’not independent:’
firstly, there are objects; the space is ’created’ by these objects. Therefore,
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the sides of the sheet of paper are not used to obtain ’horizontal’ or
’vertical’ directions. On the contrary, in primary schools, their influence
is very strong: is it a problem related to the concept of space and/or of
the didactical contract?

The failure to respect the axes of symmetry in the children’s produc-
tions could be explained by the need to put the shapes in the position
’object-to-object’, one next to another, which leads to ignoring the sym-
metry. Obviously, it is also a problem of the manipulation of the shape,
the stick of glue, and the sheet of paper that represents the background.

5. Conlusions

According to Vygotsky (1987), we live among things, facts, and phe-
nomena and we confer a meaning to them, depending on our mental and
cultural schemes. From a didactical point of view, the challenge is to stim-
ulate curiosity with the aim of enriching our mental schemes with new
knowledge and meanings. In particular, this work documents how look-
ing becomes investigation and research if it is supported by objects that
stimulate in this sense. Abstract paintings, with their features of shapes,
colours, and composition, provoke this ’transgressive way’ of seeing the
world through mathematical eyes.

The experiment documents that young pupils are able to observe and
explore the painting projected in the mesospace of the wall, and they
are capable of reproducing it on the microspace of the sheet of paper,
arranging the shapes in a “suitable way.” Certainly, the colours and the
dimensions (small, medium, or big) of the figures help them in the choice
of the pieces used in the work. The arrangement of the figures pre-exists
in the space and creates it. Therefore, the young pupils conceive the space
as “not independent”.

Work with unusual shapes appears difficult. In kindergarten, the fig-
ures manipulated above all are circles, squares, rectangles, and equilateral
triangles. The equilateral triangle, having three axes of symmetry, can be
manipulated in a better way than an isosceles (with only one axis of sym-
metry) or a right-angled triangle (without any symmetry): the equilateral
one can be placed on the sheet of paper without any particular attention,
and to arrange an isosceles, rotating it is enough, while sometimes the
right-angled triangle must be also overturned if we want to place it prop-
erly. In other words, the difference between the use of direct or inverse
isometries emerges from these protocols. Didactically, inverse transforma-
tions appear to be more difficult to apply in a situation of manipulation.
The research on this topic documents this aspect. This experience con-
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firms that the idea of overturning the shapes is nearly absent in very
young pupils (Swoboda, 2011).
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